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Abstract Imidacloprid, one of the neonicotinoid pesticides, is widely used in various types of
farmlands globally, causing negative effects on beneficial insects. The stink bug Eocanthecona
furcellata (Wolff) (Hemiptera: Pentatomidae) is an effective generalist predator that provides
natural control of Lepidoptera, Coleoptera, and other insect pests. Walking behavior is crucial
for these predators; however, the effects of imidacloprid on their walking, and thus searching,
behavior remain unknown. We measured walking behavior by using a locomotion compensator
to assess the effects of imidacloprid. Acute exposure to imidacloprid significantly reduced the
mean walking speed of nymphs (30.6–51.9% depending on instar), adult females (52.0%), and
adult males (40.5%). Walking time also was reduced by exposure to imidacloprid in nymphs
(27.1–40.5%), adult females (48.2%), and adult males (36.0%), whereas walking distance was
reduced in nymphs (8.4–19.8%), adult females (25.2%), and adult males (15.0%). These
results reveal that imidacloprid impairs the walking behavior of stink bugs, emphasizing the
need to consider the negative effects of neonicotinoid pesticides on the pest control efficacy of
natural enemy insects.
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Neonicotinoid pesticides were introduced into the market in the 1990s and rapidly
became the fastest growing and most widely used class of pesticides globally
(Jeschke et al. 2011; Simon-Delso et al. 2015). They can easily enter the soil and be
absorbed by plants, and they are extensively used as seed dressings or foliar sprays
in agriculture (Blacquière et al. 2012; Bonmatin et al. 2015; Godfray et al. 2015; Mitch-
ell et al. 2017; Robin and Andreas 2003). Neonicotinoids disrupt the neural activity of
insects by binding to nicotinic acetylcholine receptors (Elbert et al. 2008; Matsuda
et al. 2001). Furthermore, due to their water solubility and persistence in the environ-
ment, neonicotinoids are ingested by herbivorous insects, subsequently exposing
predatory insects (Blacquière et al. 2012). Imidacloprid, one of the most common
neonicotinoid pesticides, has been restricted for outdoor use in the European Union,
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as have thiamethoxam and clothianidin (Environmental Protection Agency 2015);
however, it remains widely used in agricultural production worldwide. Although imida-
cloprid effectively controls pests, it also adversely affects beneficial insects. Previous
studies have shown that imidacloprid can affect many aspects of insect behavior,
especially in honey bees and bumblebees, which are important pollinators (Desneux
et al. 2007; Kenna et al. 2019; Mengoni Goñalons and Farina 2018; Mustard et al.
2020; Smith et al. 2020; Stanley et al. 2015).

The stink bug Eocanthecona furcellata (Wolff) (Hemiptera: Pentatomidae) is
regarded as an important generalist predator of pest insects and is widely distrib-
uted in China (Yunnan, Sichuan, Hainan, Fujian, Guangdong, Guangxi), India, Sri
Lanka, Myanmar, Malaysia, the Philippines, Indonesia, Japan, and Korea (He
et al. 2013; Keerthi et al. 2020; Rider and Zheng 2002; Roca-Cusachs et al. 2020;
Shylesha and Sravika 2018). It preys on various soft-bodied arthropods (Gupta
et al. 2014), particularly lepidopteran, coleopteran, and heteropteran pests (Keer-
thi et al. 2020; Lenin and Rajan 2016; Pan et al. 2020; Vanitha et al. 2018; Yu
et al. 2021). The stink bug can feed on more than 40 types of pests as both
nymphs and adults and can be readily reared in laboratories or natural enemy
insect rearing facilities, making it a valuable natural enemy insect with great poten-
tial for use in integrated pest management (Guo et al. 2021; Gupta et al. 2014;
Pan et al. 2022; Zhang et al. 2023).

Locomotion is a fundamental behavior regulated by the central nervous system,
motor neurons, and muscles in animals. Various motor behaviors such as walking, fly-
ing, swimming, and crawling, characterized predominantly by rhythmic movement,
are critically important for survival and reproduction (De Jongh 2021; Mantziaris et al.
2020; Orlovsky et al. 1999). Insects move to find food, mating partners, and oviposi-
tion sites and avoid predators. Walking activity, which consumes less energy than fly-
ing, is the primary form of short-distance movement in insects (Shen et al. 2020).
Generally, the wingless nymphs and winged adults of E. furcellata travel by walking to
find food, mates, and oviposition sites on the same or adjacent plants. Therefore,
walking behavior is crucial to the survival and reproduction of these stink bugs. How-
ever, the effects of widely used imidacloprid on the walking behavior of stink bugs are
still unknown. Herein, we examined how acute exposure to imidacloprid might impair
the walking behavior of stink bugs by using a locomotion compensator.

Materials and Methods

Insects. Eocanthecona furcellata adults were originally provided by GreenLeaf
Biological Control Company (Yuxi, Yunnan Province) and were reared in nylon
cages (45 cm 3 45 cm 3 45 cm) under laboratory conditions at 25 6 1°C, 50–
70% relative humidity, and a photoperiod of 14:10 (L:D) h. The eggs of the stink
bug were collected into a plastic box containing a moist sponge; all nymphs were
reared in cages after hatching. The nymphs of Tenebrio molitor L. were provided
for stink bug development. Adults 2–7 d after emergence and nymphs were used
in the experiments.

Chemicals. Imidacloprid was purchased from Sigma-Aldrich (St. Louis, MO)
and diluted with double-distilled water. Field surveys showed that imidacloprid at a
dose of 0.04375% (two bags of 70% imidacloprid dissolved in �16 kg of water) is
commonly used to spray in tobacco, cotton, and rice paddy systems. Therefore,
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1/500th of the field-realistic dose of imidacloprid (0.875 ppm) was used in the
behavioral experiments.

Behavioral bioassay. The walking behavior of the stink bug was tested with a
TrackSphere LC-300 locomotion compensator (Syntech, Hilversum, The Nether-
lands), as described by Piesik et al. (2009). This device is composed of a white
sphere (300 mm in diameter) coupled to two servomotors driven by a controller
(TrackSphere TRC-01 controller, Syntech). A video camera mounted directly
above the sphere monitored the movements of the insect and was connected to
the controller that drives the servomotors to compensate for the movements of the
insect, so that the image of the insect remained in the center of the visual field.
The stink bug’s track was recorded by the tracking software TrackSphereTM v 3.1
(Syntech) at a rate of 10 Hz.

Stink bugs were submerged in double-distilled water or imidacloprid for 10 s
before being removed and used in behavioral tests after 30 min. Fifteen bugs were
used in each treatment group. The mean walking speed, walking time, and walking
distance were recorded by the tracking software.

Statistical analysis. All data are presented as means 6 SEM, with a threshold
level of statistical significance set at P , 0.05. An independent sample t test was
used to analyze the differences in mean walking speed, walking time, and walking
distance between control (CTL) and imidacloprid (IMI) groups.

Results

Walking speed. Compared with CTL groups, the mean walking speeds of the
IMI groups (centimeters per second, IMI versus CTL) were significantly reduced for
first–fifth instar nymphs and adults (first instar: 0.381 6 0.024 versus 1.191 6
0.048, P , 0.001; second instar: 0.492 6 0.035 versus 1.012 6 0.053, P , 0.001;
third instar: 0.560 6 0.037 versus 1.832 6 0.107, P , 0.001; fourth instar: 1.093 6
0.067 versus 2.107 6 0.061, P , 0.001; fifth instar: 1.233 6 0.103 versus 2.609 6
0.140, P , 0.001; adult female: 2.040 6 0.099 versus 3.920 6 0.071, P , 0.001;
and adult male: 1.493 6 0.085 versus 3.685 6 0.103, P, 0.001) (Fig. 1).

Walking time. Likewise, compared with CTL groups, the walking times of the IMI
groups (seconds, IMI versus CTL) were significantly decreased for first–fifth instar
nymphs and adults (first instar: 317.9 6 22.4 versus 1,174.1 6 92.0, P , 0.001; sec-
ond instar: 599.3 6 44.4 versus 1,643.3 6 72.0, P, 0.001; third instar: 709.9 6 40.5
versus 2,282.5 6 155.0, P , 0.001; fourth instar: 671.3 6 42.0 versus 1,860.1 6
71.7, P , 0.001; fifth instar: 906.7 6 79.5 versus 2,240.1 6 73.8, P , 0.001; adult
female: 806 6 69.5 versus 1,673.6 6 43.1, P , 0.001; and adult male: 659.4 6 63.6
versus 1,833.2 6 33.5, P, 0.001) (Fig. 2).

Walking distance. Compared with CTL groups, the walking distances of the IMI
groups (IMI vs. CTL, centimeters) were significantly diminished for the first–fifth instar
nymphs and adults (first instar: 11,824.0 6 987.1 versus 141,346.1 6 12,698.5, P ,
0.001; second instar: 28,939.2 6 2,583.5 versus 168,899.6 6 15,601.7, P , 0.001;
third instar: 38,989.2 6 2,737.4 versus 432,168.7 6 49,602.4, P , 0.001; fourth
instar: 73,449.0 6 6,431.2 versus 390,784.7 6 17,479.7, P , 0.001; fifth instar:
116,342.2 6 16,840.8 versus 585,366.2 6 37,418.1, P , 0.001; adult female:
165,481.3 6 16,648.6 versus 657,636.1 6 23,693.1, P , 0.001; and adult male:
101,315.7 6 11,277.2 versus 676,847.9 6 25,114.4, P, 0.001) (Fig. 3).
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Discussion

Our study is the first to test how a commonly used neonicotinoid insecticide
directly affects the walking behaviors of natural enemy insects. The major findings
of our study demonstrate that acute exposure to imidacloprid significantly affected
mean walking speed, walking time, and walking distance in both nymphs and

Fig. 2. Decreased walking time of stink bug.

Fig. 1. Reduced walking speed of stink bug.
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adults of E. furcellata (30.6–52.0% in mean walking speed; 27.1–48.2% in walking
time; 8.4–25.2% in walking distance; Figs. 1–3). Together, these results indicate
that imidacloprid impairs the walking behavior of E. furcellata, suggesting that
attention should be paid to the negative effects of imidacloprid when releasing,
augmenting, or conserving natural enemy insects in production fields.

It is well known that walking is crucial for insects to move around in search of
food, mating partners, oviposition sites, and avoidance of predators. Eocanthecona
furcellata can encounter nymphs of lepidopteran and coleopteran pests in the same
or adjacent crops after being released into fields. Because of the widespread use of
imidacloprid in agricultural fields, exposure to this pesticide is unavoidable for the
stink bug. Previous studies have shown that imidacloprid impairs social interaction
(Desneux et al. 2007), associative learning (Mengoni Goñalons and Farina 2018;
Mustard et al. 2020; Smith et al. 2020), flying behavior (Kenna et al. 2019), and
effective foraging and pollination services (Stanley et al. 2015) in honey bees and
bumblebees. Imidacloprid affects gustatory sensitivity to sucrose and impairs the
ability of honey bees to perform the waggle dance (Eiri and Nieh 2012). Imidacloprid
reduces the ability of bees to forage and perform homing flights in field situations
(Bortolotti et al. 2003; Mommaerts et al. 2010; Schneider et al. 2012). High acute
doses (100 and 500 ppb) of imidacloprid affect locomotion in bees (Medrzycki et al.
2003). A recent study showed that imidacloprid at acute doses of 200 and 400 ppb
significantly reduces overall daily activity in honey bees (Delkash-Roudsari et al.
2020), and imidacloprid at a dose of 10 ppb reduces flight time (Kenna et al. 2019),
showing similar patterns of effects to our findings.

Motor activity is the output of nerve signals and is the result of the combined
action of the central nervous system, motor neurons, and muscles (De Jongh 2021;
Mantziaris et al. 2020). Acetylcholine is an important excitatory neurotransmitter in
the insect nervous system, regulating the input and output of nerve signals (Gauthier

Fig. 3. Decreased walking distance of stink bug.

CHEN ET AL.: Imidacloprid Induces Impaired Walking Behavior 5

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-10



2010; Hu et al. 2010). Previous studies have shown that imidacloprid has a high
agonistic affinity for nicotinic acetylcholine receptors, affecting the central nervous
system (Elbert et al. 2008; Schmuck et al. 2003). Imidacloprid binds to acetylcholine
receptors, inhibiting or blocking nerve signal transmission, which may lead to
reduced movement speed, power, and ultimately, shortened movement distance in
the stink bugs. In addition, imidacloprid has been shown to induce the down-regula-
tion of genes involved in sugar-metabolizing pathways (Derecka et al. 2013) and
could also reduce mitochondrial activity, impair respiratory processes, and cause
rapid mitochondrial depolarization (Moffat et al. 2015; Nicodemo et al. 2014), which
may contribute to the impaired walking performance in stink bugs. To understand
the neural and molecular mechanisms by which imidacloprid impairs walking behav-
ior, further research is needed to determine where and how imidacloprid affects
nerves and muscles during signal transmission.

In summary, our results show that acute exposure to imidacloprid impaired the
walking behavior of E. furcellata, indicating that we should pay attention to the
negative effects of neonicotinoid pesticides on the pest control efficacy of natural
enemy insects in the future.
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