Activity of *Rosmarinus officinalis* (Lamiales: Lamiaceae) Essential Oil and Its Main Constituent, 1,8-Cineole, against *Tribolium castaneum* (Coleoptera: Tenebrionidae)¹

Ruchuon Wanna^{2,3,4} and Hakan Bozdoğan⁵

Department of Agricultural Technology, Mahasarakham University, Maha Sarakham 44150, Thailand

J. Entomol. Sci. 60(1): 86–106 (January 2025) DOI: 10.18474/JES24-16

Abstract Rosemary essential oil (EO), from Rosmarinus officinalis L. (Lamiales: Lamiaceae), has potent properties against stored insect pests. This study aimed to evaluate the efficacy of EOs from both manually extracted and commercially produced R. officinalis, as well as the main compound 1,8-cineole, against adults of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Chemical analysis of the R. officinalis EOs was conducted using a gas chromatograph-mass spectrometer. Toxicity and repellent effects were assessed through contact and fumigation bioassays in a factorial experimental design with five replicates. Each R. officinalis EO type showed nine major compounds (>90%), with 1.8-cineol as the predominant component (>52%). Contact toxicity bioassays showed 1,8-cineole had a median lethal concentration of 1.12% at 48 h, 1.54% for manually extracted EOs, and 1.64% for commercially produced R. officinalis EOs. Furthermore, 0.5% of 1,8-cineole displayed strong contact efficacy against T. castaneum. Fumigant toxicity was observed at 140.07, 127.28, and 121.52 µl/L air, respectively. Manually extracted EO at 160 µl/L air demonstrated strong fumigant efficacy against T. castaneum, acting as a contact (66–94%) and fumigant (82–69%) repellent within 8 h, outperforming commercially produced EO and 1,8-cineole. These findings highlight the potential of manually extracted EO from R. officinalis as a natural insecticide, effective in both contact and fumigation against T. castaneum. This offers a promising avenue for using plant extracts in storage pest prevention, potentially leading to the development of insecticide products.

Key Words essential oil, stored insect pests, 1,8-cineol, rosemary, Lamiaceae

Weevils and moths are the main insect pests of stored products, resulting in significant grain losses during storage. More than 600 species of coleopteran pests pose a constant threat to stored grains and derivatives (Yadav et al. 2014), resulting in quantitative losses of about 20–30% in tropical and subtropical regions (Rajendran 2002). The growing human population has intensified the challenge of food shortages, making it imperative to implement measures to protect stored food from

¹Received 5 February 2024; accepted for publication 20 February 2024.

²Corresponding author (email: ruchuon.w@msu.ac.th).

³Department of Agricultural Technology, Mahasarakham University, Maha Sarakham 44150, Thailand.

⁴Resource Management in Agricultural Technology Research Unit, Mahasarakham University, Maha Sarakham 44150, Thailand.

⁵Vocational School of Technical Sciences, Department of Plant and Animal Production, Kırşehir Ahi Evran University, Kırşehir 40100, Turkey.

insect infestation and contamination. These efforts are critical to improving food availability.

The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), is a secondary storage insect pest. Unlike the rice weevil, Sitophilus oryzae (L.), it cannot directly penetrate and damage grains but tends to worsen infestations initiated by primary insect pests or when seeds exhibit holes or cracks. It is commonly found in food production facilities, such as mills, crop plants, warehouses, and retail stores, where seeds and grains are processed and stored (Bingham et al. 2017, Popović et al. 2013). Its presence is noted in various food items such as ground grains, cereal products, cookies, nuts, spices, spaghetti, cake flour, dried pet food, dried flowers, chocolate, and nuts (Via 1999). Tribolium castaneum inflicts significant losses on stored foods, including grains, seeds, flour, and milling products (Arthur et al. 2019). Adult T. castaneum are reddish-brown, with a life cycle lasting 5 to 6 mo under optimal conditions of 15°C and 75% relative humidity (RH). They exhibit resilience to temperature ranges of 22-43°C and boast the fastest reproductive rate among stored product insect pests, with numbers potentially increasing by 73-333 times in a month (Devi and Devi 2015). Both larvae and adults contribute to severe infestations, contaminating products with their dead bodies and fecal materials, leading to a gravish appearance with mold growth in the flour. Tribolium castaneum releases benzoquinone, a defensive secretion known as a carcinogen (Unruh et al. 1998), and its unpleasant odor makes the infested products unsuitable for human consumption. Also, it may trigger allergic responses, and the consumption of contaminated food poses serious health hazards to humans and livestock (Magan et al. 2003). Stored food commodities affected by T. castaneum experience both qualitative deterioration and quantitative losses.

Chemical fumigation stands as a widely used and effective method for insect control, with commonly used substances, including methyl bromide (CH₃Br) and phosphine (PH₃). Methyl bromide, a widely used chemical in storage facilities, possesses advantages over other substances due to its capability to eliminate insects at all growth stages and its efficient dispersion and penetration into products. However, it falls under Class I hazardous substances, posing environmental risks, such as ozone layer depletion and alterations in the Earth's surface temperature (World Meteorological Organization 1995). The continuous use of such chemical products has led to the development of resistance in the red flour moth population to synthetic pesticides (Bossou et al. 2015), resulting in permanent residues of certain chemicals in the environment and ecosystems, with associated toxic effects on humans (Hill 1989). These factors underscore the need to urgently explore alternative control strategies using natural compounds as substitutes for toxic pesticides (Lamiri et al. 2001).

Presently, several safe methods for humans and animals, including biologic prevention, the use of resistant varieties, vacuum storage, and integrated pest control, are available. Biologic pesticides, offering effectiveness, safety, and ecologic acceptability, have advantages over chemical alternatives (Leonard and Julius 2000). The essential oils (EOs), playing a pivotal role in safeguarding crops from insect infestation, have garnered significant attention, as researchers explore alternative pest control methods (Batish et al. 2008). The use of EOs from plants

provides an alternative approach to managing and eradicating insect pests in storage through various applications, such as fumigation, contact, antifeedant, and repellency. As natural extracts, EOs are safe for both users and consumers and possess the ability to decompose naturally (Feldlaufer and Ulrich 2015, Silva et al. 2003). The EOs from different plants exhibit unique complexes with diverse effects, serving as effective pesticides (EI-Wakeil 2013).

Rosmarinus officinalis L., commonly known as rosemary, is an aromatic plant with compounds that impart a distinctive odor or aroma (Maia and Moore 2011). Native to Mediterranean countries, rosemary grows under various climatic conditions (Begum et al. 2013). Rosemary EO is renowned for its antibacterial (Fu et al. 2007), antispasmolytic (Mothana et al. 2011), antifungal (Carvalhinho et al. 2012), antioxidant (Hendel et al. 2016), anticancer (Gezici et al. 2017), and insecticidal properties, serving as the active ingredient in various commercial insecticides (Isman et al. 2008). The main components of rosemary EO include borneol, linalool, terpineol, caryophyllene, 1,8-cineole, α -pinene, and verbenone. These components exhibit activity against certain types of insects (Kardinan 2007, Simon et al. 1984, Wibowo 2012). Papachristos et al. (2004) discovered that rosemary EO and its components can prevent and eliminate insect pests in storage, such as the bean weevil (Acanthoscelides obtectus Say). The primary components of R. officinalis EO, including 1,8-cineole, α -pinene, β -pinene, and camphor, have been identified (Isman et al. 2008). Wanna and Ruamjit (2015) reported the efficacy of R. officinalis EO oil in eliminating rice weevil, S. oryzae (L.) and maize weevil (Sitophilus zeamais Motschulsky) with up to 100% mortality. Therefore, this research aimed to assess the effectiveness of the EO derived from R. officinalis and its main component, 1,8-cineole, in preventing and eliminating T. castaneum adults in stored products.

Materials and Methods

Insect. Red flour beetles, *T. castaneum*, were reared on a substrate of wheat flour and rice bran (10:5, w/w) within a plastic box covered by fine mesh cloth for proper ventilation. The breeding was conducted at the Department of Agricultural Technology, Mahasarakham University (Maha Sarakham, Thailand), maintaining consistent environmental conditions at $29 \pm 2^{\circ}$ C and $75 \pm 10^{\circ}$ RH, with a photoperiodic regime of 12 h light–dark. For all bioassays, 10-d-old, mixed sex adults were used. All experimental procedures were conducted under the identical environmental conditions as the insect culture.

Preparation of EO. The EO was obtained from dried *R. officinalis* flowers purchased at Makro Supermarket (Muang District, Maha Sarakham, Thailand), using the water distillation method, as outlined by Wanna (2021) with slight modifications. Sliced dried flowers (150 g) were subjected to water distillation in a modified Clevenger-type apparatus containing 700 ml of distilled water in a 2,000-ml distillation flask. The setup, secured with a clamp on a heating mantle, operated for 6 h. The EO collected in the water was extracted through a graduated measuring tube, with excess water removed via centrifugation at 10,000 rpm for 10 min. The resulting EO was stored in a sealed amber glass bottle and refrigerated at 4°C in the dark until needed for future use.

Pure rosemary EO derived from *R. officinalis* chemotype 'cineole' was acquired in an amber bottle from Botanicessence Essential Oil (Bangkok, Thailand). The EO was kept in the dark at 4°C until needed for both analyses and bioassays.

Regent grade 1,8-cineole purchased from Toronto Research Chemical (Canada) was used in the bioassays.

Analysis of EO. The chemical composition of R. officinalis EOs was determined following the method of Wanna and Khaengkhan (2023) using a gas chromatograph-mass spectrometer (GC-MS) series Clarus 680 (PerkinElmer, Akron, OH). Separation was achieved on an Elite-5MS capillary column (5% phenylmethyl polysiloxane stationary phase, 30 m, inside diameter: 0.32 mm, 1-µm film thickness; PerkinElmer). A 1-µl sample was injected in split mode (split ratio of 1:100, v/v). Helium was used as the carrier gas with a flow rate of 1 mL/min, and the injector temperature was maintained at 200°C. The oven temperature was initially set at 45°C for 5 min, increased to 280°C at a rate of 10°C/min, and held for 5 min, operating in electron impact mode of 70 eV. A guadrupole mass analyzer was used, and the temperature detector was set at 250°C. Spectra were scanned (m/ z) from 40 to 1,000 Da. Identifications of R. officinalis EOs constituents were based on the retention index determined with reference to homologous series of nalkanes (C10-C15), National Institute of Standards and Technology Mass Spectral Search (Gaithersburg. MD) and Wiley library (Hoboken, NJ), and comparison of retention index and mass spectral data with the literature (Adams 2007). The relative amounts of individual components were calculated based on the relative percentage peak areas, without using a correction factor.

Contact toxicity bioassay. The contact toxicity bioassay was conducted using the impregnated filter paper test, modified from Wanna et al. (2023). Different concentrations of two *R. officinalis* EOs and 1,8-cineole (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0%) were separately prepared in acetone. Each Whatman (no. 1) filter paper (9 cm diameter and surface area 63.585 cm^2) was treated with 1,000 µl of the sample solution and positioned in a 9-cm-diameter petri dish. The control treatment consisted of acetone only. After allowing acetone to evaporate for 2 min at room temperature, 10 unsexed adults of *T. castaneum* were released into each petri dish and covered with a lid. All treatments were replicated five times using a factorial in completely random design. Petri dishes were maintained under laboratory conditions ($29 \pm 2^{\circ}$ C, $75 \pm 10^{\circ}$ RH, and a 12 h light–dark photoperiod). Adult mortality of *T. castaneum* was observed and recorded at 24, 48, and 72 h. Insects were considered dead if they remained immobile with no leg or antennal movements detected (Wanna et al. 2021).

Fumigant toxicity bioassay. The fumigant toxicity bioassay was conducted using the vapor phase test followed by Wanna and Wongsawas (2022). Filter paper (Whatman no.1; 2 cm diameter and surface area 3.14 cm^2) was saturated with 500 µl of 10, 20, 40, 80, 160, and 320 µl/L air dilutions of *R. officinalis* EOs or 1,8-cineole, as previously prepared. The control treatment consisted of acetone only. After allowing the acetone to evaporate for 2 min at room temperature, the filter paper was affixed to the underside of the screw cap of a 40-ml glass vial. The caps were securely fastened onto vials containing 10 unsexed adults of *T. castaneum*. Each concentration and control were replicated five times in a factorial completely random design. All glass vials were maintained under laboratory conditions

 $(29 \pm 2^{\circ}C, 75 \pm 10\%$ RH, and a 12 h light–dark photoperiod). Adult mortality of *T. castaneum* was observed and recorded at 24, 48, and 72 h. Insects were considered dead if they remained immobile with no leg or antennal movements detected.

Repellent activity bioassay. The repellent activity bioassay on contact was conducted for adults of *T. castaneum* using the impregnated paper with a choice test, as outlined by Wanna and Wongsawas (2022). Dilutions of two *R. officinalis* EOs or 1,8-cineole (0.2, 0.4, 0.6, 0.8, 1.0, and 1.2%) were prepared using acetone as the solvent. Each replicate was performed in a 9-cm-diameter petri dish covered with a 9-cm-diameter filter paper (Whatman no.1; surface area 63.585 cm²), with one-half treated with *R. officinalis* EOs or 1,8-cineole, and the other half treated with acetone alone as a control. Each half of the filter paper disk was individually treated with 500 μ l. The acetone in both halves was allowed to evaporate for 2 min at room temperature and then affixed at the center of a petri dish using adhesive tape. Ten unsexed adults of *T. castaneum* were released at the center of the paper disk, and the dish was covered. Each concentration and control were replicated five times in a factorial completely random design under the same rearing conditions. The number of *T. castaneum* adults present in the control and treated areas was recorded after 1, 2, 4, and 8 h of testing.

The repellent activity bioassay on fumigant was evaluated using the vapor phase with a choice test, following modified methods from Wanna and Khaengkhan (2023). The repellent test kit included two plastic bottles (each 700 ml, 8 cm diameter, 17 cm height), designated as the test bottle and the alternative bottle. A small plastic tube (0.5 cm diameter, 15 cm length) served as a connection between the bottles, with a hole at the lower side for placement. A drilled hole in the middle of the tube facilitated the release of *T. castaneum* adults, with a sliding tube to control opening and closing, preventing escape. The EOs or 1,8-cineole were prepared at six concentrations (0.078, 0.156, 0.312, 0.625, 1.25, and 2.5 µl/L air) by dilution with acetone. A 100-µl aliquot of each sample solution was released on a filter paper strip (1.5 cm wide, 5 cm long), evaporating at room temperature for 2 min. The strip was placed in a small glass vial (2.5 cm diameter, 5 cm height) and suspended from the center of the screw cap of the test bottle. The screw cap was tightly closed. For the alternative bottle, a filter paper strip was saturated with 100 μ l of acetone, prepared similarly to the test bottle. Ten unsexed adults of T. castaneum were released into the opening in the middle of the connecting tube between the test bottle and the alternative bottle, and the sliding tube was securely closed. Each concentration and each control were replicated five times in a factorial completely random design under the same rearing conditions. The number of T. castaneum adults present in the test bottle and the alternative bottle were recorded after testing at 1, 2, 4, and 8 h.

Statistical analysis. Mortality of *T. castaneum* adults was determined using the formula % adult mortality = $(Nd/Nt) \times 100$, where *Nd* represents the number of deceased *T. castaneum* adults and *Nt* is the total number of *T. castaneum* adults involved in the bioassay. Control mortality adjustments were applied following Abbott's (1925) formula when control mortality ranged between 5 and 20%. The concentration–mortality response of two *R. officinalis* EOs on *T. castaneum* adults in terms of contact and fumigant toxicity was assessed through probit analysis (Finney 1971), providing the median lethal concentration (LC₅₀) value and associated parameters. The repellent effect was measured using the repellence index (RI),

				Peak a	area (%)
No.	Compound	Chemical structure	Terpenes class	Manually extracted EO	Commercially produced EO
1	à-Pinene	$C_{10}H_{16}$	monoterpene	9.70	14.70
2	Camphene	$C_{10}H_{16}$	monoterpene	3.28	3.13
3	à-Myrcene	$C_{10}H_{16}$	monoterpene	_	1.55
4	1,8-Cineole	C ₁₀ H ₁₈ O	monoterpene	52.70	53.23
5	Linalool	C ₁₀ H ₁₈ O	monoterpene	—	1.29
6	Camphor	$C_{10}H_{16}O$	monoterpene	5.54	9.69
7	Borneol	C ₁₀ H ₁₈ O	monoterpene	7.77	1.95
8	Terpinen-4-ol	$C_{10}H_{18}O$	monoterpene	1.10	—
9	Terpineol	$C_{10}H_{18}O$	monoterpene	6.99	3.46
10	Bornyl acetate	$C_{12}H_{20}O_2$	monoterpene	2.31	—
11	Caryophyllene	$C_{15}H_{24}$	sesquiterpene	1.43	4.12
	Total			90.80	93.12

Table	1.	Comparison of the chemical compositions of the manually-extracted
		and the commercially-produced R. officinalis EOs.

calculated as RI = 2T/(T+C), where *T* is the percentage of *T. castaneum* in the treatment bottle and *C* is the percentage in the alternative bottle. Contact toxicity, fumigant toxicity, and repellent activity were subjected to one-way analysis of variance. Treatment means were compared using the Tukey honestly significant difference test at $P \leq 0.05$.

Results

Chemical composition of *R. officinalis* **EO.** The GC-MS analysis of *R. officinalis* EOs involved identifying components by retention index, determined on an Elite-5MS column using a homologous series of *n*-hydrocarbons (Table 1). In the manually extracted *R. officinalis* EO, 30 components were identified, constituting 97.68%. Among these, nine key compounds (90.80%) were identified, with 1,8-cineol (52.70%) being the most abundant, followed by α -pinene (9.70%), borneol (7.77%), terpineol (6.99%), camphor (5.54%), camphene (3.28%), bornyl acetate (2.31%), caryophyllene (1.43%), and terpinen-4-ol (1.10%). The chemical composition of commercially produced *R. officinalis* EO consisted of 30 compounds (98.52%), including nine key compounds (93.12%). The predominant components were 1,8-cineol (53.23%), followed by α -pinene (14.70%), camphor (9.69%), caryophyllene (4.12%), terpineol (3.46%), camphene (3.13%), borneol (1.95%), α -myrcene (1.55%), and linalool (1.29%). A comparison of the chemical compositions of manually extracted and commercially produced *R. officinalis* EOs revealed that both types shared nine essential compounds (over 90%). The commercially produced EO had a higher total percentage peak area (93.12%) compared with the manually extracted EO (90.80%). Both types contained 1,8-cineol as the major component, with similar amounts and only four different compounds. Notably, terpinen-4-ol and bornyl acetate were identified in the manually extracted EO, while α -myrcene and linalool were found in the commercially produced EO.

Contact toxicity of R. officinalis EOs and 1,8-cineole. The contact toxicity test results (LC₅₀) on *T. castaneum* adults, conducted through the impregnated filter paper test using the manually extracted R. officinalis EO, commercially produced R. officinalis EO, and 1,8-cineole diluted with acetone at seven concentrations (0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0%) are presented in Table 2. The LC₅₀ values of the manually extracted R. officinalis EO exhibited LC₅₀ responses of 2.21, 1.54, and 1.39% in T. castaneum adults at 24, 48, and 72 h. In comparison, the commercially produced *R. officinalis* EO exhibited LC₅₀ of 1.95% at 24 h, 1.64% at 48 h, and 1.43% at 72 h. The 1,8-cineole had LC₅₀ of 1.65, 1.12, and 0.83% at 24, 48, and 72 h, respectively. Notably, at 24 h, 1,8-cineole displayed the highest contact toxicity, resulting in the lowest LC₅₀ value, followed by the commercially produced R. officinalis EO and the manually extracted R. officinalis EO, respectively. This trend continued at 48 and 72 h, where 1,8-cineole maintained the highest contact toxicity, followed by the manually extracted R. officinalis EO and the commercially produced R. officinalis EO. Throughout the test duration, 1,8-cineole consistently demonstrated greater toxicity than both the manually extracted and commercially produced R. officinalis EOs, with the manually extracted R. officinalis EO consistently exhibiting higher toxicity compared with commercially produced R. officinalis EO.

The contact toxicity efficacy against *T. castaneum* adults is presented in Table 3, revealing significantly differences (P < 0.01) at each tested time point. The mortality of *T. castaneum* adults increased with higher concentrations and prolonged exposure. At a 3% concentration of the manually extracted *R. officinalis* EO, commercially produced *R. officinalis* EO, and the main compound 1,8-cineole, the contact killing effect against *T. castaneum* adults was the highest, with no significant differences (P > 0.05). However, over a 120-h exposure, 1,8-cineole consistently achieved a maximum mortality of 100% for *T. castaneum* adults across all concentration ranges. Moreover, the manually extracted *R. officinalis* EO demonstrated a tendency to be more effective in killing *T. castaneum* adults compared with the commercially produced *R. officinalis* EO.

Fumigant toxicity of *R. officinalis* **and 1,8-cineole.** The toxicity test results (LC₅₀) for killing *T. castaneum* adults through the vapor phase test with the manually extracted *R. officinalis* EO, commercially produced *R. officinalis* EO, and the main compound 1,8-cineole diluted with acetone at eight concentrations (0, 25, 50, 75, 100, 125, 150, and 200 μ /L air) are shown in Table 4. The manually extracted *R. officinalis* EO exhibited the fumigation toxicity (LC₅₀) against *T. castaneum* adults at 24, 48, and 72 h with 140.91, 127.28, and 112.26 μ /L air, respectively. The commercially produced *R. officinalis* EO had LC₅₀ values of 143.78, 121.52, and 115.12 μ /L air, while 1,8-cineole exhibited of 150.61, 140.07, and 126.90 μ /L air, respectively. At 24 h, the manually extracted *R. officinalis* EO demonstrated the highest fumigation toxicity, followed by the commercially produced *R. officinalis* EO had the highest fumigation toxicity, followed by the produced *R. officinalis* EO had the highest fumigation toxicity, followed by the set function of *R. officinalis* EO had the highest fumigation toxicity.

Table 2. The contact toxicity (LC₅₀) of *R. officinalis* EOs and its main compound 1,8-cineole against adult *T. castaneum* at 24, 48 and 72 h.

Treatments	Time (h)	L	LC ₅₀ (95% CL) (%)	Regression equation	r²
Manually extracted	24	300	2.21 (1.90–2.47)	y = 28.143x - 12.214	0.88
R. officinalis EO	48	300	1.54 (1.65–2.44)	y = 38.143x - 8.9286	0.89
	72	300	1.39 (1.09–2.15)	y = 39.143x - 4.4286	0.87
Commercially produced	24	300	1.95 (1.13–2.01)	y = 31.714x - 11.857	06.0
R. officinalis EO	48	300	1.64 (1.30–2.10)	y = 36.286x - 9.5714	06.0
	72	300	1.43 (0.51–1.43)	y = 39.714x - 7.0000	0.87
1,8-cineole	24	300	1.65 (0.98–1.73)	y = 29.000x + 2.2143	0.89
	48	300	1.12 (0.84–1.98)	y = 35.286x + 10.500	0.80
	72	300	0.83 (0.19–1.11)	y = 33.714x + 22.000	0.65
n – Number of T. castaneum adults test	ted on contact toxicity; CL	 Confidence limit; 	r^2 – Coefficient of determination; LC ₅₀ – (Concentration of R. officinalis EOs or 1,8-cine	ole, which is

lethal to 50% of T. castaneum exposed during the testing times.

	•						
Treatments/			Mean morta	lity of T. castaneum a	adults (%)		
Concentrations (%)	24 h	48 h	72 h	96 h	120 h	144 h	168 h
Manually extracted <i>R</i> .	officinalis EO						
0	0.00 ± 0.00h	0.00 ± 0.00g	0.00 ± 0.00d	0.00 ± 0.00d	$0.00 \pm 0.00e$	$0.00 \pm 0.00c$	$0.00 \pm 0.00c$
0.5	$0.00 \pm 0.00h$	$4.00 \pm 5.48g$	$6.00 \pm 8.94 cd$	$14.00 \pm 15.17 cd$	$18.00 \pm 10.95d$	$38.00 \pm 22.80b$	$38.00\pm\mathbf{22.80b}$
F	$10.00 \pm 14.14gh$	12.00 ± 16.43g	$14.00 \pm 15.17c$	$20.00 \pm 23.45c$	$34.00 \pm \mathbf{21.91c}$	$46.00 \pm 15.17b$	$46.00 \pm 15.17b$
1.5	$18.00 \pm 8.37g$	48.00 ± 25.88f	$76.00 \pm 15.17b$	90.00 ± 17.32a	94.00 ± 13.42a	100.00 ± 0.00a	100.00 ± 0.00a
N	$48.00 \pm 8.37e$	94.00 ± 13.42abc	94.00 ± 8.94a	98.00 <u>±</u> 4.47a	$100.00 \pm 0.00a$	100.00 ± 0.00a	100.00 ± 0.00a
2.5	$56.00 \pm 13.42 de$	$80.00 \pm 12.25cd$	$90.00 \pm 7.07a$	98.00 ± 4.47a	$100.00 \pm 0.00a$	100.00 ± 0.00a	100.00 ± 0.00a
e	88.00 ± 13.04a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a
Commercially produce	ed R. officinalis EO						
0	$0.00 \pm 0.00h$	0.00 ± 0.00g	$0.00 \pm 0.00d$	0.00 ± 0.00de	$0.00 \pm 0.00e$	$0.00 \pm 0.00c$	$0.00 \pm 0.00c$
0.5	$0.00 \pm 0.00h$	$0.00 \pm 0.00g$	$6.00\pm5.48cd$	$16.00 \pm 15.17c$	$24.00\pm15.17cd$	$36.00\pm20.74b$	$36.00\pm20.74b$
F	$2.00 \pm 4.47h$	$6.00 \pm 5.48g$	$8.00 \pm \mathbf{8.37cd}$	$14.00 \pm 8.94 cde$	$26.00 \pm \mathbf{20.74c}$	$38.00 \pm 17.89b$	$38.00 \pm \mathbf{17.89b}$
1.5	$32.00 \pm 16.43f$	$60.00 \pm 15.81 \text{ef}$	$68.00 \pm 23.87b$	$74.00\pm23.02b$	$78.00 \pm 17.89b$	96.00 ± 8.94a	96.00 ± 8.94a
N	$68.00 \pm 13.04bcd$	74.00 ± 11.40 de	94.00 ± 8.94a	98.00 ± 4.47a	$100.00 \pm 0.00a$	100.00 ± 0.00a	$100.00 \pm 0.00a$
2.5	66.00 ± 11.40 cd	$82.00 \pm 13.04cd$	94.00 ± 8.94a	98.00 ± 4.47a	$100.00 \pm 0.00a$	100.00 ± 0.00a	$100.00 \pm 0.00a$
ю	82.00 ± 13.04ab	92.00 ± 8.37abc	98.00 ± 4.47a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a

Downloaded from https://prime-pdf-watermark.prime-prod.pubfactory.com/ at 2025-07-02 via free access

J. Entomol. Sci. Vol. 60, No. 1 (2025)

Table 3. Continued.

Treatments/			Mean morta	lity of T. castaneum	adults (%)		
Concentrations (%)	24 h	48 h	72 h	96 h	120 h	144 h	168 h
1,8-cineole							
0	$0.00 \pm 0.00h$	$0.00 \pm 0.00g$	0.00 ± 0.00	$\textbf{0.00}~\pm~\textbf{0.00de}$	$\textbf{0.00} \pm \textbf{0.00e}$	$0.00\pm0.00c$	$0.00\pm0.00c$
0.5	$2.00\pm\mathbf{4.47h}$	$6.00 \pm 8.94g$	$14.00 \pm \mathbf{15.17c}$	$24.00\pm\mathbf{19.49c}$	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$
-	$50.00 \pm 10.00e$	72.00 ± 13.04 de	98.00 ± 4.47a	98.00 ± 4.47a	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$
1.5	$48.00 \pm 21.68e$	$86.00\pm\mathbf{13.42bcd}$	98.00 ± 4.47a	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	100.00 ± 0.00a	$100.00 \pm 0.00a$
0	$60.00 \pm 15.81 de$	$82.00 \pm \mathbf{17.89bcd}$	98.00 ± 4.47a	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$
2.5	$80.00 \pm 12.25 abc$	98.00 ± 4.47ab	100.00 ± 0.00a	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	100.00 ± 0.00a	$100.00 \pm 0.00a$
3	$80.00 \pm 12.25abc$	$100.00 \pm 0.00a$	100.00 ± 0.00a	100.00 ± 0.00a	$100.00 \pm 0.00a$	100.00 ± 0.00a	$100.00 \pm 0.00a$
F-test	**	**	**	* *	* *	* *	**
			and a different for the second s	Simple to a cut office of			

** Significant difference at $P \le 0.01$; Means within the same column followed by the same letter are not significantly different (Tukey's HSD test: P > 0.05).

Table 4. The fumigant toxicity (LC₅₀) of *R. officinalis* EOs and its main compound 1,8-cineole against adult *T. castaneum* at 24, 48 and 72 h.

Treatments	Time (h)	Ľ	LC ₅₀ (95% CL) (µL/L air)	Regression equation	r²
Manually extracted	24	300	140.91 (69.28 – 161.52)	y = 0.4922x - 19.358	0.72
R. officinalis EO	48	300	127.28 (37.41 – 340.96)	y = 0.5321x - 17.724	0.71
	72	300	112.26 (81.62 – 317.80)	y = 0.5428x - 10.937	0.82
Commercially produced	24	300	143.78 (68.12 – 154.04)	y = 0.4892x - 20.336	0.69
R. officinalis EO	48	300	121.52 (58.85 – 287.51)	y = 0.5584x - 17.855	0.76
	72	300	115.12 (113.35 – 296.91)	y = 0.5408x - 12.256	0.80
1,8-cineole	24	300	150.61 (69.41 – 147.65)	y = 0.4668x - 20.301	0.70
	48	300	140.07 (57.01 – 263.87)	y = 0.4702x - 15.86	0.73
	72	300	126.90 (110.75 – 289.71)	y = 0.4824x - 11.218	0.83
n – Number of <i>T. castaneum</i> adults te	sted on fumigant toxicity;	CL – Confidence	limit; r^2 – Coefficient of determination; LC ₅₀ – C	Concentration of R. officinalis EOs or 1,8-cin	neole, which

is lethal to 50% of T. castaneum exposed during the testing times.

96

manually extracted *R. officinalis* EO and 1,8-cineole. At 72 h, the manually extracted *R. officinalis* EO exhibited the highest fumigation toxicity, followed by the commercially produced *R. officinalis* EO and 1,8-cineole. Throughout the 24, 48, and 72 h, the manually extracted *R. officinalis* EO consistently showed higher fumigant toxicity against *T. castaneum* adults compared with the commercially produced *R. officinalis* EO and 1,8-cineole. Notably, the commercially produced *R. officinalis* EO tended to be more toxic than 1,8-cineole.

The fumigation toxicity efficiency against *T. castaneum* adults is presented in Table 5, indicating significant differences at 24–72 h (P < 0.01) and at 96–168 h (P < 0.05). Adult mortality of *T. castaneum* increased with higher concentrations and prolonged exposure. At a concentration of 320 µl/L air, both the manually extracted *R. officinalis* EO and the commercially produced *R. officinalis* EO, along with the main compound 1,8-cineole, demonstrated the highest killing effect against *T. castaneum* adults, with no significant differences. Notably, after 96 h of exposure, the manually extracted *R. officinalis* EO achieved 100% mortality with concentrations of 160 µl/L air and above. Furthermore, it is noteworthy that 1,8-cineole exhibits a tendency to be more effective against *T. castaneum* adults compared with the commercially produced *R. officinalis* EO.

Repellent activity of *R. officinalis* and 1, 8-cineole. The repellent activity test for adult of *T. castaneum*, conducted through the impregnated filter paper with a choice test using the manually extracted *R. officinalis* EO, commercially produced *R. officinalis* EO, and 1,8-cineole diluted with acetone at six concentrations (0.2, 0.4, 0.6, 0.8, 1.0, and 1.2%), are summarized in Table 6. There was no significant difference ($P \ge 0.05$) in repellent activity observed for *T. castaneum* adults at 1, 2, and 4 h, with repellency percentages ranging between 32 and 96%. However, a significant difference (P < 0.05) was found at 8 h. The manually extracted *R. officinalis* EO demonstrated a contact effect, repelling *T. castaneum* adults up to 94.00 ± 8.94% at a concentration of 1.2%. In comparison, 1,8-cineole repelled 90.00 ± 12.25% at a concentration of 0.6%, and commercially produced *R. officinalis* EO repelled 88.00 ± 8.37% at a concentration of 1%. However, no statistically significant differences were found in the contact bioassay to repel *T. castaneum* adults.

The repellent activity test for *T. castaneum* adults, conducted in the vapor phase with a choice test using the manually extracted *R. officinalis* EO, commercially produced *R. officinalis* EO, and 1,8-cineole diluted with acetone at six concentrations (0.078, 0.156, 0.312, 0.625, 1.25, and 2.5 μ l/L air) are presented in Table 7. There was no significant difference ($P \ge 0.05$) in repellent activity for *T. castaneum* adults at every period tested (1–8 h), with repellency percentages ranging between 30 and 96%. However, the results indicated that the manually extracted *R. officinalis* EO exhibits a higher efficacy in repelling *T. castaneum* adults compared with commercially produced *R. officinalis* EO and 1,8-cineole.

Discussion

The results of this study demonstrate a total of 11 compounds identified in both manually extracted and commercially produced *R. officinalis* EOs. These compounds primarily belong to the monoterpene and sesquiterpene categories. Upon analysis, it was found that both EOs contained 1,8-cineole (>50%) as the predominant

siccord.							
Treatments/			-	nsect mortality (%) :	E SE		
Concentrations (μL/L air)	24 h	48 h	72 h	96 h	120 h	144 h	168 h
Manually extracted R. officini	alis EO						
0	0.00 ± 0.00d	$0.00 \pm 0.00c$	$0.00 \pm 0.00c$	0.00 ± 0.00d	0.00 ± 0.00d	0.00 ± 0.00e	0.00 ± 0.00f
10	$\textbf{2.00} \pm \textbf{4.47d}$	$\textbf{2.00} \pm \textbf{4.47c}$	$\textbf{2.00} \pm \textbf{4.47c}$	$14.00 \pm 15.17cd$	$18.00 \pm 16.43cd$	$24.00 \pm 11.40d$	40.00 ± 12.25e
20	$4.00 \pm 5.48cd$	$6.00\pm8.94c$	$8.00 \pm 10.95c$	$16.00 \pm 11.40cd$	$20.00 \pm 12.25c$	34.00 ± 15.17 cd	52.00 ± 14.83cde
40	$\textbf{2.00} \pm \textbf{4.47d}$	$\textbf{2.00} \pm \textbf{4.47c}$	$6.00\pm8.94c$	$14.00 \pm 8.94cd$	$22.00 \pm 19.24c$	40.00 ± 21.21 cd	50.00 ± 21.21cde
80	$2.00 \pm 4.47d$	$8.00 \pm \mathbf{13.04c}$	$8.00 \pm \mathbf{13.04c}$	$14.00\pm16.73cd$	$24.00 \pm 11.40c$	38.00 ± 13.04 cd	56.00 ± 11.40 cd
160	98.00 ± 4.47a	98.00 ± 4.47a	$98.00 \pm 4.47a$	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	100.00 ± 0.00a	100.00 ± 0.00a
320	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a
Commercially produced <i>R. o</i>	ficinalis EO						
0	0.00 ± 0.00d	$0.00\pm0.00c$	$0.00 \pm 0.00c$	$0.00 \pm 0.00d$	$0.00 \pm 0.00d$	$0.00 \pm 0.00e$	0.00 ± 0.00f
10	$\textbf{2.00} \pm \textbf{4.47d}$	$\textbf{2.00} \pm \textbf{4.47c}$	$8.00 \pm \mathbf{10.95c}$	$18.00\pm\mathbf{10.95cd}$	$36.00 \pm 16.73c$	$46.00 \pm \mathbf{8.94c}$	$54.00 \pm 8.94cde$
20	$4.00~\pm~5.48cd$	$4.00\pm5.48c$	$12.00 \pm 17.89c$	$18.00\pm\mathbf{14.83cd}$	$26.00 \pm 11.40c$	$46.00 \pm 8.94c$	$54.00 \pm 5.48cde$
40	$4.00~\pm~5.48cd$	$10.00 \pm 17.32c$	$14.00\pm\mathbf{21.91c}$	$\textbf{20.00} \pm \textbf{21.21cd}$	$30.00 \pm 21.21c$	$44.00 \pm \mathbf{30.50c}$	$60.00 \pm 21.21c$
80	$0.00 \pm 0.00d$	$\textbf{2.00} \pm \textbf{4.47c}$	$8.00\pm\mathbf{8.37c}$	$\textbf{16.00} \pm \textbf{8.94cd}$	$20.00 \pm 12.25c$	$38.00 \pm \mathbf{13.04cd}$	52.00 ± 8.37cde
160	$56.00 \pm 51.77b$	$56.00 \pm \mathbf{51.77b}$	$58.00 \pm 53.10b$	$62.00 \pm 47.64b$	$64.00 \pm 45.06b$	$70.00\pm37.42b$	$80.00 \pm 28.28b$
320	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a	100.00 ± 0.00a

J. Entomol. Sci. Vol. 60, No. 1 (2025)

Table 5. Continued.

Treatments/			_	nsect mortality (%)	± SE		
Concentrations (אַר/L air)	24 h	48 h	72 h	96 h	120 h	144 h	168 h
1,8-cineole							
0	$0.00 \pm 0.00d$	$0.00\pm0.00c$	$0.00\pm0.00c$	$\textbf{0.00}~\pm~\textbf{0.00d}$	$\textbf{0.00}~\pm~\textbf{0.00d}$	$0.00 \pm 0.00e$	$0.00\pm0.00f$
10	$0.00 \pm 0.00d$	$4.00\pm\mathbf{8.94c}$	$6.00\pm8.94c$	$16.00 \pm \mathbf{5.48cd}$	$24.00\pm\mathbf{5.48c}$	$36.00 \pm \mathbf{11.40cd}$	$48.00\pm\mathbf{13.0cde}$
20	$0.00 \pm 0.00d$	$0.00\pm0.00c$	$0.00\pm0.00c$	$14.00\pm8.94cd$	$24.00\pm\mathbf{5.48c}$	32.00 ± 4.47 cd	$48.00 \pm \mathbf{8.37cde}$
40	$2.00 \pm 4.47d$	$4.00\pm\mathbf{5.48c}$	$4.00\pm5.48c$	$\textbf{12.00} \pm \textbf{8.37cd}$	$\texttt{24.00} \pm \texttt{11.40c}$	$\textbf{28.00} \pm \textbf{8.37cd}$	$44.00\pm\mathbf{11.40de}$
80	$6.00~\pm~5.48cd$	$14.00 \pm \mathbf{20.74c}$	$14.00\pm20.74c$	$28.00 \pm \mathbf{22.80c}$	$34.00 \pm \mathbf{16.73c}$	$48.00 \pm \mathbf{13.04cd}$	58.00 ± 13.04 cd
160	$26.00 \pm 43.36c$	$14.00\pm\mathbf{19.49c}$	$18.00 \pm \mathbf{24.90c}$	$54.00 \pm \mathbf{27.02b}$	$64.00\pm23.02b$	88.00 ± 17.89ab	$92.00 \pm 10.95ab$
320	100.00 ± 0.00a	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$	$100.00 \pm 000a$	$100.00 \pm 0.00a$	100.00 ± 0.00a
F-test	* *	* *	**	*	*	*	*
* Significant difference at $P \leq$	0.05; ** Significant (difference at $P \leq 0.01$	1; Means within the s	ame column followed	by the same letter are	not significantly differe	nt (Tukey's HSD test:

P > 0.05).

Table 6. Mean (\pm SE) repellent percentage of *T. castaneum* adults after 1, 2, 4 and 8 h treated with different preparations and concentrations of *R. officinalis* EOs and its main compound 1,8-cineole by contact bioassay.

Treatments/		Insect rep	ellent (%) ± SE	
Concentrations (%)	1 h	2 h	4 h	8 h
Manually extracted R.	officinalis EO			
0.2	54.00 ± 21.90	82.00 ± 20.49	80.00 ± 24.49	74.00 ± 8.94abcd
0.4	64.00 ± 18.17	78.00 ± 23.87	66.00 ± 26.08	$66.00\pm19.49 \text{bcde}$
0.6	68.00 ± 27.75	82.00 ± 19.24	72.00 ± 13.04	$68.00\pm8.37 abcde$
0.8	76.00 ± 20.74	88.00 ± 13.04	94.00 ± 5.48	$90.00\pm10.00ab$
1.0	82.00 ± 13.04	92.00 ± 10.95	86.00 ± 11.40	$88.00\pm16.43 \text{abc}$
1.2	76.00 ± 23.02	92.00 ± 10.95	82.00 ± 20.4	94.00 ± 8.94a
Commercially produce	d R. officinalis EO			
0.2	80.00 ± 20.00	32.00 ± 16.43	54.00 ± 33.62	$52.00\pm17.89 de$
0.4	80.00 ± 20.00	70.00 ± 29.15	68.00 ± 24.90	$86.00\pm8.94abc$
0.6	78.00 ± 19.24	78.00 ± 20.49	80.00 ± 15.81	$\textbf{62.00} \pm \textbf{10.95cde}$
0.8	78.00 ± 10.95	70.00 ± 30.82	76.00 ± 32.09	$78.00\pm10.95abc$
1.0	82.00 ± 17.89	90.00 ± 10.00	84.00 ± 15.17	88.00 ± 8.37abc
1.2	96.00 ± 5.48	86.00 ± 16.73	84.00 ± 15.17	84.00 ± 23.02abc
1,8-cineole				
0.2	52.00 ± 16.43	36.00 ± 24.08	48.00 ± 30.33	48.00 ± 19.24e
0.4	42.00 ± 13.04	42.00 ± 34.21	64.00 ± 39.75	$50.00\pm20.00de$
0.6	68.00 ± 16.43	84.00 ± 35.78	70.00 ± 21.21	90.00 ± 12.25ab
0.8	68.00 ± 14.83	68.00 ± 34.21	68.00 ± 16.43	$82.00\pm29.50abc$
1.0	72.00 ± 19.24	78.00 ± 4.47	88.00 ± 10.95	68.00 ± 34.93abcde
1.2	54.00 ± 27.02	40.00 ± 41.83	72.00 ± 40.87	82.00 ± 17.89abc
F-test	ns	ns	ns	*

ns – Not significant difference; * Significant difference at $P \le 0.05$; Means within the same column followed by the same letter are not significantly different (Tukey's HSD test: P > 0.05).

component, aligning with the findings of Isikber et al. (2006), who reported similar chemical composition in *R. officinalis* EO through GC-MS analysis, identifying 1,8-cineole as the main constituent. The observed insecticidal effects of *R. officinalis* EO might be attributed to the inhibition of acetylcholinesterase (AChE) enzyme activity, as suggested by Dohi et al. (2009). Such changes induced by EOs can disrupt cholinergic transmission, resulting in uncoordinated leg movements in insects (Lang et al. 2012). Numerous studies on the insecticidal properties of EOs have highlighted AChE inhibitory effects (Kim et al. 2013, Kiran and Prakash 2015, Park et al. 2016, Saad et al. 2018). Abdelgaleil et al. (2009) reported similar outcomes in tests involving various monoterpenes on rice weevils (*S. oryzae*) and red

Table 7. Mean (±SE) repellent percentage of *T. castaneum* adults after 1, 2, 4 and 8 h treated with different preparations and concentrations of *R. officinalis* EOs and its main compound 1,8-cineole by fumigant bioassay.

Treatments/		Insect repell	ent (%) ± SE	
Concentrations (μL/L air)	1 h	2 h	4 h	8 h
Manually extracted R. officinalis EO				
0.078	46.00 ± 18.17	50.00 ± 15.81	70.00 ± 15.81	82.00 ± 13.04
0.156	46.00 ± 25.10	54.00 ± 27.02	74.00 ± 35.78	84.00 ± 26.08
0.312	48.00 ± 28.64	58.00 ± 27.75	72.00 ± 33.47	86.00 ± 13.42
0.625	64.00 ± 21.91	64.00 ± 21.91	86.00 ± 11.40	94.00 ± 8.94
1.25	64.00 ± 33.62	68.00 ± 25.88	88.00 ± 13.04	94.00 ± 8.94
2.5	68.00 ± 28.64	72.00 ± 23.87	96.00 ± 8.94	96.00 ± 8.94
Commercially produced R. officinalis	EO			
0.078	56.00 ± 24.08	46.00 ± 28.81	52.00 ± 29.50	66.00 ± 23.02
0.156	50.00 ± 30.82	62.00 ± 23.87	54.00 ± 31.30	58.00 ± 19.24
0.312	62.00 ± 24.90	50.00 ± 20.00	56.00 ± 20.74	58.00 ± 28.64
0.625	68.00 ± 28.64	60.00 ± 22.36	70.00 ± 22.36	72.00 ± 19.24
1.25	62.00 ± 17.89	48.00 ± 34.21	46.00 ± 26.08	68.00 ± 13.04
2.5	66.00 ± 11.40	68.00 ± 8.37	74.00 ± 8.94	66.00 ± 27.02
1,8-cineole				
0.078	30.00 ± 30.00	46.00 ± 15.17	44.00 ± 30.50	46.00 ± 8.94

WANNA AND BOZDOĞAN: Essential Oil against Tribolium castaneum

101

Downloaded from https://prime-pdf-watermark.prime-prod.pubfactory.com/ at 2025-07-02 via free access

÷	П	
8	Ш	
ž	Ш	
2	Ш	
÷Ð.	Ш	
2	Ш	
ŏ	I	
	Ш	
	Ш	
Ð	Ш	
ā	Ш	
a	П	
Η.	ll	

Treatments/		Insect repell	ent (%)	
Concentrations (μL/L air)	1 h	2 h	4 h	8 h
0.156	58.00 ± 19.24	44.00 ± 27.02	60.00 ± 18.71	48.00 ± 21.68
0.312	48.00 ± 13.04	52.00 ± 20.49	70.00 ± 10.00	48.00 ± 16.43
0.625	52.00 ± 13.04	48.00 ± 16.43	54.00 ± 21.91	60.00 ± 20.00
1.25	34.00 ± 26.08	42.00 ± 42.66	68.00 ± 10.95	38.00 ± 25.88
2.5	66.00 ± 11.40	56.00 ± 32.86	62.00 ± 10.95	50.00 ± 31.62
F-test	SU	SU	ns	SU
ns – Not significant difference				

flour beetles (*T. castaneum*), with 1,8-cineole being one of the substances that exhibited strong enzyme inhibition. The monoterpene component speculated to be responsible for AChE inhibition aligns with 1,8-cineole, identified as the main component in *R. officinalis* EOs (Bajalan et al. 2017).

The current investigation demonstrates the toxic effects of both manually extracted and commercially produced R. officinalis EOs on T. castaneum adults through contact and fumigation methods, along with repellent properties observed through both contact and fumigation. This aligns with prior findings highlighting R. officinalis EO as an effective fumigant for preventing and controlling various insect pests, including T. castaneum, Tribolium confusum Jacquelin, Cadra cautella Walker, and Callosobruchus chinesis L. (Isikber et al. 2006, Lee et al. 2002, Sim et al. 2009, Trivedi et al. 2017). The repellent effect against diverse insect types also has been documented (Francikowski et al. 2019). This efficacy is attributed to the composition of EOs, mainly monoterpenoids and sesquiterpenoids, acting as fast-acting poisons affecting insect neurotransmitters and interacting with various receptors (Isman 2019). The potential modes of action of plant EOs on pests encompass contact, fumigant, antifeedant, repellent effects, and growth inhibition, as highlighted by various studies (Bossou et al. 2015, Chu et al. 2012, Lee and Lee 2016, Regnalt-Roger et al. 2012). In addition, the ingestion of EOs has demonstrated significant efficacy against numerous storage insect pests (Fabres et al. 2014). Consequently, R. officinalis emerges as a promising bioinsecticide with substantial potential, particularly in addressing the growing prevalence of general resistance to traditional insecticides.

Acknowledgments

This research project is financially supported by Mahasarakham University. The authors thank the Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, for providing the instruments. The authors also acknowledge laboratory assistance by Pawinee Tortid and Jiraporn Krasaetep.

References Cited

- Abbot, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–267.
- Abdelgaleil S.A.M., M.I.E. Mohamed, M.I.E. Badawy and S.A.A. El-Arami. 2009. Fumigant and contact toxicities of monoterpenes to *Sitophilus oryzae* (L.) and *Tribolium castaneum* (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 35: 518–525.
- Adams, R.P. 2007. Identification of Essential Oil Components by Gas Chromatography/ Mass Spectrometry. Allured Publishing, Carol Stream, IL.
- Arthur, F.H., B.A. Hale, L.A. Starkus, A.R. Gerken, J.F. Campbell and T. McKay. 2019. Development of *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae) on rice milling components and by-products: Effects of diet and temperature. J. Stored Prod. Res. 80: 85–92.
- Bajalan, I., R. Rouzbahani, A.G. Pirbalouti and F. Maggi. 2017. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of *Rosmarinus* officinalis. Ind. Crops Prod. 107: 305–311.
- Batish, D.R., P.H. Sing, K.R. Kohli and S. Kaur. 2008. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 256: 2166–2174.

- Begum, A., S. Sandhya, S.S. Ali, K.R. Vinod, S. Reddy and D. Banji. 2013. An in-depth review on the medicinal flora *Rosmarinus officinalis* (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 12: 61–74.
- Bingham, A.C., B. Subramanyam, R. Mahroof and S. Alavia. 2017. Development and validation of a model for predicting survival of young larvae of *Tribolium castaneum* exposed to elevated temperatures during heat treatment of grain-processing facilities. J. Stored Prod. Res. 72: 143–152.
- Bossou, A.D., E. Ahoussi, E. Ruysbergh, A. Adams, G. Smagghe, N.D. Kimpe, F. Avlessi, D.C.K. Sohounhloue and S. Mangelinckx. 2015. Characterization of volatile compounds from three Cymbopogon species and *Eucalyptus citriodora* from Benin and their insecticidal activities against *Tribolium castaneum*. Ind. Crops Prod. 76: 306–317.
- Carvalhinho, S., A. Costa and A. Coelho. 2012. Susceptibilities of *Candida albicans* mouth isolates to antifungal agents, essentials oils, and mouth rinses. Mycopathologia 174: 69–76.
- Chu, S.S., G.H. Jiang, W.L. Liu and Z.L. Liu. 2012. Insecticidal activity of the root bark essential oil of *Periploca sepium* Bunge and its main component. Nat. Prod. Res. 26: 926–932.
- Devi, M.B. and N.V. Devi. 2015. Biology of rust-red flour beetle, *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). Biol. Forum 7: 12–15.
- Dohi, S., M. Terasaki and M. Makino. 2009. Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J. Agric. Food Chem. 57: 4313–4318.
- El-Wakeil, N.E. 2013. Botanical pesticides and their mode of action. Gesunde Pflanz. 65: 125–149.
- Fabres, A., C.M.D.S. Janaina, K.V.S. Fernandes, J. Xavier-Filho, G.L. Rezende and A.E.A. Oliveira. 2014. Comparative performance of the red flour beetle *Tribolium castaneum* (Coleoptera: Tenebrionidae) on different plant diets. J. Pestic. Sci. 87: 495–506.
- Feldlaufer, M.F. and K.R. Ulrich. 2015. Essential oils as fumigants for bed bugs (Hemiptera: Cimicidae). J. Entomol. Sci. 50: 129–137.
- Finney, D.J. 1971. Probit Analysis. Cambridge Univ. Press, London.
- Francikowski, J., B. Baran, M. Cup, J. Janiec and M. Krzyżowski. 2019. Commercially available essential oil formulas as repellents against the stored-product pest *Alphitobius diaperinus*. Insects 10: 96.
- Fu, Y., Y. Zu, L. Chen, X. Shi, Z. Wang, S. Sun and T. Efferth. 2007. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 21: 989– 994.
- Gezici, S., N. Sekeroglu and A. Kijjoa. 2017. In vitro anticancer activity and antioxidant properties of essential oils from Populus alba L. and Rosmarinus officinalis L. from Southeastern Anatolia of Turkey. Indian J. Pharm. Educ. Res. 51: 498–503.
- Hendel, N., L. Larous and L. Belbey. 2016. Antioxidant activity of rosemary (*Rosmarinus officinalis* L.) and its in vitro inhibitory effect on *Penicillium digitatum*. Int. Food Res. J. 23: 1725–1732.
- Hill, I.R. 1989. Aquatic insects and pyrethroids. Pestic. Sci. 27: 429–465.
- Isikber, A.A., M.H. Alma, M. Kanat and A. Karci. 2006. Fumigant toxicity of essential oils from Laurus nobilis and Rosmarinus officinalis against all life stages of Tribolium confusum. Phytoparasitica 34: 167–177.
- Isman, M.B. 2019. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 19:235–241.
- **Isman, M.B., J.A. Wilson and R. Bradbury. 2008.** Insecticidal activities of commercial rosemary oils (*Rosmarinus officinalis*) against larvae of *Pseudaletia unipuncta* and *Trichoplusia ni* in relation to their chemical compositions. Pharm. Biol. 46: 82–87.
- Kardinan, A. 2007. Daya tolak ekstrak tanaman rosemary (*Rosmarinus officinalis*) terhadap Lalat (*Musca domestica*). Bul. Penelit. Tanam. Rempah Obat 17: 170–176.
- Kim, S.W., J. Kang and I.K. Park. 2013. Fumigant toxicity of Apiaceae essential oils and their constituents against *Sitophilus oryzae* and their acetylcholinesterase inhibitory activity. J. Asia Pac. Entomol. 16: 443–448.

- Kiran, S. and B. Prakash. 2015. Assessment of toxicity, antifeedant activity, and biochemical responses in stored-grain insects exposed to lethal and sublethal doses of *Gaultheria procumbens* L. essential oil. J. Agric. Food Chem. 63: 10518–10524.
- Lamiri, A., S. Lhaloui, B. Benjilali and M. Berrada. 2001. Insecticidal effects of essential oils against Hessian fly, *Mayetiola destructor* (Say). Field Crops Res. 71: 9–15.
- Lang, G.J., K.Y. Zhu and C.X. Zhang. 2012. Can acetylcholinesterase serve as a target for developing more selective insecticides? Curr. Drug Targets 13: 495–501.
- Lee, B.H., S.E. Lee, P.C. Annis, S.J. Pratt, B.S. Park and F. Tumaalii. 2002. Fumigant toxicity of essential oils and monoterpenes against the red flour beetle, *Tribolium castaneum* Herbst. J. Asia Pac. Entomol. 5: 237–240.
- Lee, H.K. and H.S. Lee. 2016. Toxicities of active constituent isolated from *Thymus vulgaris* flowers and its structural derivatives against *Tribolium castaneum* (Herbst). Appl. Biol. Chem. 59: 821–826.
- Leonard, G. and J.M. Julius. 2000. Review biopesticides: a review of their action, applications, and efficacy. Pest Manag. Sci. 56: 651–676.
- Magan, N., R. Hope, V. Cairns and D. Aldred. 2003. Post-harvest fungal ecology: impact of fungal growth and mycotoxin accumulation in stored grain. Eur. J. Plant Pathol. 109: 723– 730.
- Maia, M.F. and S.J. Moore. 2011. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J. 10 (Suppl 1): 11.
- Mothana, R., S. Hasson, W. Schultze, A. Mowitz and U. Lindequist. 2011. Phytochemical composition and in vitro antimicrobial and antioxidant activities of essential oils of three endemic Soqotraen *Boswellia* species. Food Chem. 126: 1149–54.
- Papachristos, D.P., K.I. Karamanoli, D.C. Stamopoulos and U.M. Spiroudi. 2004. The relationship between the chemical composition of three essential oils and their insecticidal activity against *Acanthoscelides obtectus* (Say). Pest Manag. Sci. 60: 514–20.
- Park, C.G., M. Jang, K.A. Yoon and J. Kim. 2016. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against *Drosophila suzukii* (Diptera: Drosophilidae). Ind. Crops Prod. 89: 507–513.
- Popović, A., J. Sucur, D. Orčić and P. Štrbac. 2013. Effects of essential oil formulations on the adult insect *Tribolium castaneum* (Herbst) (COL., Tenebrionidae). J. Cent. Eur. Agric. 14: 181–193.
- Rajendran, S. 2002. Postharvest pest losses, Pp. 654–656. *In* D. Pimentel (ed.), Encyclopedia of Pest Management. Marcel Dekker, New York.
- Regnalt-Roger, C., C. Vincent and J.T. Arnason. 2012. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 57: 405–424.
- Saad, M.M.G., H.K. Abou-Taleb and S.A.M. Abdelgaleil. 2018. Insecticidal activities of monoterpenes and phenylpropenes against *Sitophilus oryzae* and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Appl. Entomol. Zool. 53: 173–181.
- Silva, G.D., P. Pizarro, Y. Casals and M. Berti. 2003. Evaluación de plantas medicinales en polvo para el control de *Sitophilus zeamais* Motschulsky en maíz almacenado. Rev. Bras. Agrociênc. 9: 383–388.
- Sim, M.J., D.R. Choi and Y.J. Ahn. 2009. Vapor phase toxicity of plant essential oils to Cadra cautella (Lepidoptera: Pyralidae). J. Econ. Entomol. 99: 593–598.
- Simon, J.E., A.F. Chadwick and L.E. Craker. 1984. The Scientific Literature on Selected Herbs and Aromatic and Medicinal Plants of Temperate Zone. Archon Books, Chicago, IL.
- Trivedi, A., N. Nayak and J. Kumar. 2017. Fumigant toxicity study of different essential oils against stored grain pest *Callosobruchus chinensis*. J. Pharmacogn. Phytochem. 6: 1708–1711.
- Unruh, L.M., R. Xu and K.J. Kramer. 1998. Benzoquinone levels as a function of age and gender of the red flour beetle, *Tribolium castaneum*. Insect Biochem. Mol. Biol. 28: 969–977.
- Via, S. 1999. Cannibalism facilitates the use of a novel environment in the flour beetle, *Tribolium castaneum*. Heredity 82: 267–275.

- Wanna, R. 2021. Potential of essential oils from *Piper nigrum* against cowpea weevil, *Callosobruchus maculatus* (Fabricius). Int. J. Agric. Technol. 17: 375–384.
- Wanna, R., D. Bunphan, W. Kaewduangta, M. Wongsawas and P. Khaengkhan. 2021. The toxicity and bioactivity of powder and essential oil of climbing wedelia against maize weevil. J. Sustain. Sci. Manag. 16: 106–114.
- Wanna, R. and P. Khaengkhan. 2023. Insecticidal activity of essential oil from seeds of Foeniculum vulgare (Apiales: Apiaceae) against Sitophilus zeamais (Coleoptera: Curculionidae) and its effects on crop seed germination. J. Entomol. Sci. 58: 104–116.
- Wanna, R., P. Khaengkhan, D. Bunphan, B. Kunlanit, P. Khaengkhan and H. Bozdoğan. 2023. Insecticidal activity of essential oil from *Jasminum sambac* (L.) Aiton against *Callosobruchus maculatus* (Fabricius, 1775) (Coleoptera: Bruchidae). Plant Prot. Sci. 59: 369–378.
- Wanna, R. and K. Ruamjit. 2015. Efficacy of essential oils from flowers 5 species against rice weevil and corn weevil. Agric. Sci. J. 46 (Suppl. 3): 367–370.
- Wanna, R. and M. Wongsawas. 2022. Toxicity and bioactivity of essential oil of Cilantro (*Eryngium foetidum* L.) against red flour beetle [*Tribolium castaneum* (Herbst)]). Aust. J. Crop Sci. 16: 259–265.
- Wibowo, A. 2012. Minyak atsiri dari daun rosemary (*Rosmarinus officinalis*) sebagai Insektisida alami melalui metode hidrodestilasi. J. Sains Seni. 1: 1–4.
- World Meterological Organization. 1995. Scientific assessment of ozone depletion: 1991. World Meteorological Organization global ozone research and monitoring project, Report No. 37.
- Yadav, D.N., T. Anand, M. Sharma and R.K. Gupta. 2014. Microwave technology for disinfestation of cereals and pulses: An overview. J. Food Sci. Technol. 51: 3568–3576.