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Abstract Imidacloprid, a neonicotinoid insecticide, is efficacious against hemipterans, including
the brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae). However, frequent
use of this insecticide has resulted in the development of high levels of resistance among
brown planthopper populations. Endosymbionts of insects have contributed to host physiology
and evolution and play a role in resistance to chemical toxins. In this study, polymerase chain
reaction—denaturing gradient gel electrophoresis was used to analyze the bacterial and yeast-
like symbiont communities of imidacloprid-resistant and -susceptible brown planthopper popu-
lations. The Shannon-Weaver diversity index and the evenness index indicated no differences
in the richness and the expression of overall species distribution of the symbiotic communities
of resistant and susceptible populations. The similarity coefficients of 0.53 and 0.56 for bacterial
and yeast-like symbionts, respectively, indicated the main types of differences among microor-
ganisms in resistant and susceptible populations. Sequence comparison analysis indicated the
bacterial species in the susceptible population were members of the Enterobacteriaceae and
Moraxellaceae, and those in the resistant population were members of the Enterobacteriaceae,
Oxalobacteriaceae, Rhodobacteriaceae, and Sphingomonadaceae. Differences also were found
in the composition of yeast-like symbionts of the two populations; Cryptococcus luteolus,
Pseudozyma aphidis, and Pseudozyma antarctica were detected in the susceptible population,
and Cladosporium perangustum was detected in the resistant population.
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The brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae), is an
economically important pest that damages Asian rice, Oryza sativa L., crops by direct
injury and by transmitting rice virus disease. The brown planthopper is distributed
over approximately half of the rice-growing area of China and causes annual losses
of approximately 1—1.5 million tons of rice (Lou and Cheng 2011).

Effective control of the brown planthopper has been seriously compromised in
recent years by the widespread appearance of resistance to imidacloprid, a neonicoti-
noid insecticide that has been used as the primary control of brown planthopper infes-
tations in eastern and southeastern Asia since the mid-1990s. Imidacloprid resistance
was first reported in Thailand but has since been reported in other countries, including
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China (Lou and Cheng 2011, Matsumura et al. 2008, Wang et al. 2008). The detoxifi-
cation mechanisms of insects in response to neonicotinoid insecticides mainly include
the up-regulation of P450 detoxification enzyme activity and the enhancement of
transport metabolism ability.

Microbial symbionts benefit their insect hosts (Gibson and Hunter 2010) by impacting
nutrition (Douglas 2009, Hosokawa et al. 2010), reproduction (Wilkinson et al. 2001),
virulence regulation (Lu et al. 2004), and detoxification (Dowd and Shen 1990, Xu
et al. 2009), with detoxification indicating possible links between insect gut symbionts
and resistance to chemical toxins. Cheng et al. (2017) found that the gut symbiont
Citrobacter sp. plays a key role in the degradation of trichlorfon. DNA sequencing
revealed that members of the Lactobacillales or other scarcer taxa play a role in
conferring insecticide resistance to Plutella xylostella (L.) (Lepidoptera: Plutelli-
dae) (Xia et al. 2013). The susceptibility of Myzus persicae Sulzer (Hemiptera:
Aphididae) to nine insecticides was determined after treatment with ampicillin;
the susceptibility of M. persicae to imidacloprid, cyantraniliprole, and clothianidin
decreased significantly (3.4 times, 2.2 times, and 2.0 times, respectively) (Yang
et al. 2020). Kikuchi et al. (2012) found that fenitrothion-degrading Burkholderia
strains established a symbiosis with the hemipteran Riptortus pedestris (F.), conferring
resistance to fenitrothion.

Bacterial and yeast-like symbiotes are important symbionts of the brown plant-
hopper that provide their hosts with cholesterol, vitamins, and essential amino
acids that the host cannot produce (Sasaki et al. 1996). Exposure of neonatal
planthoppers to high temperature, antibiotics, lysozyme via injections, and insec-
ticides reduced yeast-like symbiont abundance and thus influenced host growth
and development (Raguraman et al. 1988, Shankar and Baskaran 1988). These
symbionts also play crucial roles in changes in the virulence of brown planthop-
per populations for resistant rice varieties (Lu et al. 2004) because the rate of
change in endosymbiotic genes is much more rapid than that in host genes (Camp-
bell 1990, Ishikawa et al. 1986). The symbiont-related mechanisms underlying high
resistance to imidacloprid in the brown planthopper have received relatively little
attention. Analysis of strains revealed a single point mutation (Y151S) in two nAChR
subunits that were associated with a dramatic reduction in binding to imidacloprid
(Liu et al. 2005). Enhanced detoxification of imidacloprid by carboxyesterase, gluta-
thione-S-transferase, and cytochrome P450 monooxygenase appears to be the pre-
dominant mechanism of resistance in field-selected populations (Puinean et al. 2010,
Wen et al. 2009).

Zhang et al. (2013) used polymerase chain reaction—denaturing gradient gel
electrophoresis (PCR-DGGE) to study the mid-gut bacterial communities of the
larvae of the striped rice stem borer (Chilo suppressalis (Walker)). Hou et al.
(2013) analyzed yeast-like symbiont diversity in N. lugens with PCR-DGGE and
found several previously detected, undetected, and uncultured fungi. Xu et al.
(2014) used DGGE to elucidate the structures of bacterial communities in N.
lugens from different geographic and resistant virulent populations. In this study,
we used PCR-DGGE to assess bacterial and yeast-like symbiont communities in
imidacloprid-resistant and imidacloprid-susceptible brown planthopper popula-
tions, with the goal of revealing the possible functions of these endosymbionts in
the development of imidacloprid resistance.
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Table 1. PCR primers used in this study.

Primer type Designation Sequence (5'-3')

Bacteria 49f GAGTTTGATCCTGGCTCAG

specific 1525r AGAAAGGAGGTGATCCAGCC

Archaea 341f-GC  CGCCCGCCGCGCGCGGCGGGCGGGGCG GGG

specific GCACGGGGGGCCTAGGGGAGGCAG CAG
534r ATTACC GCG GCT GCT GG

Yeast GCNL-1  GCATATCAATAAGCGGAGGAAAAG

specific NL-4 GGTCCGTGTTTCAAGACGG
LS2 ATTAAACAACTCGACTC

Materials and Methods

Rice varieties, including TN1 (brown planthopper susceptible), were planted in
clay pots (15 cm in diameter) in the greenhouse of the Zhejiang Academy of Agri-
cultural Sciences, Hangzhou, China. The experiments described below were con-
ducted with 45-d-old rice plants.

The susceptible N. lugens population, provided by the Zhejiang Research Institute
of Chemical Industry, had not been exposed to any insecticide for at least 10 yr before
the study. The resistant N. lugens population was selected by spraying imidacloprid
(at the LCsp) for more than 50 generations at the Zhejiang Academy of Agricultural
Science. The resistance ratio of the resistant N. lugens population was nearly
400 times greater than that of the susceptible population. Female adult N. lugens
from the imidacloprid-susceptible and imidacloprid-resistant populations were collected
and used for tests.

Fifty adult female brown planthoppers from each population were used to collect
total DNA. Each planthopper was surface sterilized with 75% ethanol for 1 min. Geno-
mic DNA was extracted with a bacterial DNA kit (Omega Bio-Tek Company Ltd.,
Guangzhou, China) or a yeast DNA kit (Omega Bio-Tek). DNA purity and concentra-
tion were measured with a protein nucleic acid spectrophotometer (DU800, Beckman
Coulter Life Sciences, Indianapolis, IN).

All primers used in this study are shown in Table 1 and were synthesized by
Shanghai Shenggong Bioengineering Company, Ltd. (Shanghai, China). For analysis
of specific bacterial diversity, PCR amplification of the 16S rRNA gene was conducted
using bacteria-specific primers 49f and 1525r (Henckel et al. 1999, Muyzer et al.
1993). For general bacterial diversity analysis, PCR amplification of the 16S rRNA
gene was performed using the 341f-GC and 534r primers (Nakagawa and Fukui
2003). For analysis of yeast diversity, PCR amplification of the 26S rRNA gene was
performed as described previously (Prakitchaiwattana et al. 2004) with initial amplifi-
cation of the D1/D2 region with eukaryotic universal primers NL-1 and NL-4 (Taylor
et al. 2002) followed by nested PCR using primers GCNL-1 and LS2 (Cocolin et al.
2002). DNA from each sample was subjected to DGGE following PCR amplification
with each primer set (Table 1). All PCR amplification was conducted in a final volume of
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25 pl containing 0.5 pl (50 ng/pl) of template, 1 pl of template DNA, 0.5 pl of primer NL-1
and primer NL-4 (10 pM), 21.5 pl of Platinum PCR Supermix High Fidelity, and 1.5 pl of
sterile double-distilled water. Reactions were performed in a PTC-220 DNA Engine
Dyad thermocycler (MJ Research, Saint-Bruno-de-Montarville, Quebec, Canada).

DGGE was performed using the D Code Universal Mutation System (Bio-Rad
Laboratories, Hercules, CA) for separation of PCR products. PCR products were
applied directly onto 8% (w/v) polyacrylamide gels in a running buffer containing 1x
TAE buffer (20 mM Tris, 10 mM acetate, 0.5 mM EDTA, pH 8.3) and a denaturing gra-
dient of 30—60% urea and formamide (for bacteria and yeast) or 35-55% urea and
formamide (for Archaea, where 100% denaturant contains 7 M urea and 40% form-
amide). Electrophoresis was performed at 80 V for 14 h at a constant temperature of
60°C. After electrophoresis, the gels were stained with SYBR Green | nucleic acid
stain (Thermo Fisher Scientific, Waltham, MA) and photographed under ultraviolet
transillumination. Sterile blades were used to excise bands from the gels, and each
band was mixed with 20 ul of 0.1X TE buffer solution, incubated overnight at 4°C,
and used for PCR amplification with the appropriate primer set.

DGGE profiles were analyzed with quantity BIO-1D software (Bio-Rad Labora-
tories) to determine the position and intensity of each band. The Shannon-Weaver
index (H), an expression of the proportional abundance of species in a community,
was calculated using the formula:

S
H==> pilnp
i=1
where p; is the ratio of the DNA quantity of the ith band to the total DNA quantity of
all the bands of the sample and S is the number of DGGE bands in the sample.
The evenness index (E), an expression of overall distribution of species y in an
environment, was calculated using the formula:

H
InS

where S is the total number of species in the sample.
Sorenson’s pairwise similarity coefficient (Cg) is used to compare the presence or
absence of species in different populations and was calculated using the formula:

E =

Cs=2j/(a+b)

where a and b are the number of bands in the DNA DGGE lanes of two different
samples and is the number of same bands in the two DGGE lanes.

The significance of differences between the two insect populations was analyzed
with a one-way analysis of variance with a significance threshold of P < 0.05.

Results

The Shannon-Weaver diversity index values for both bacterial and yeast-like sym-
bionts of the resistant population (Table 2) were close to that of those values for the
susceptible population, thus suggesting that the richness and diversity of symbiotic
microorganisms of the two populations were similar. The evenness index values for
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Fig. 1. DGGE profile of bacterial (left) and yeast-like (right) symbionts of
N. lugens. Lanes 1-3 are from imidacloprid-resistant populations; lanes
4-6 are from imidacloprid-susceptible populations.

both bacterial and yeast-like symbionts of the two populations were all close to 1,
meaning the relative abundance of microbial species in imidacloprid-resistant and
imidacloprid-susceptible N. lugens populations were even (e.g., no difference in the
evenness of resistant and susceptible microbial community). The similarity coeffi-
cients comparing the imidacloprid-resistant and imidacloprid-susceptible populations
were 0.53 and 0.56 for the bacterial and yeast-like symbiont communities, respec-
tively (Table 2), indicating differences in the main types of microorganisms in the two
populations. Fifteen bacterial bands and 12 yeast-like bands from gels were selected
for partial sequencing (Fig. 1). Sequence comparison analysis was conducted based
on sequences in the National Center for Biotechnology Information GenBank data-
base. All selected clones were closely related (=97% sequence identity) to the spe-
cies reported in GenBank. The number of bacterial species in the imidacloprid-
susceptible and -resistant populations were not significantly different. The bacteria
in the susceptible population were members of the Enterobacteriaceae and Morax-
ellaceae families. The bacteria in the resistant population belonged to more families:
Oxalobacteriaceae, Rhodobacteriaceae, Sphingomonadaceae, and Enterobacteria-
ceae (Table 3). Yeast-like fungi Cryptococcus luteolus, Pseudozyma aphidis, Pseu-
dozyma antarctica, Capnodiales species, and Cladosporium perangustum were
identified for the first time in N. lugens. The imidacloprid-susceptible population
contained more yeast-like symbiont species than did the imidacloprid-resistant
population. Cryptococcus luteolus, P. aphidis, and P. antarctica were detected in
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only the susceptible population, C. perangustum was detected in only the resistant
population, and Capnodiales species and some unknown species existed in both
populations (Table 4).

Discussion

Insects harbor symbionts that enhance fitness by contributing to digestion, nutrition,
reproduction, and resistance to xenobiotics (Douglas 2011). However, few studies on
the contributions of symbionts to insecticide resistance have been performed because
of the difficulty of separating symbionts from host insects. The evolution of insecticide
resistance is accompanied by a series of physiological changes in the host (Klepzig
et al. 2009), which alter the structure and function of the microorganism community
(Gimonneau et al. 2014). In this study, the Shannon-Weaver diversity and evenness
index values of the imidacloprid-susceptible and -resistant populations were not sig-
nificantly different. These findings could indicate that the development of insecticide
resistance by N. lugens is not closely related to the richness and evenness of
the symbiotic microorganism population; instead, insecticide resistance seems
to be related to the types of symbiotic microorganisms.

Sequencing analysis revealed that common bacteria (Arsenophonus nasoniae
and Enterobacter asburiae) existed in both the imidacloprid-resistant and -susceptible
populations, whereas Herbaspirillum sp., Sphingomonas sp., and Amaricoccus sp.
were detected in only the resistant population. We speculated that aromatic com-
pound degradation (Bacosa et al. 2010, Baraniecki et al. 2002, Lafortune et al. 2009,
Singleton et al. 2008) resulted in these species transitioning from secondary bacterial
species to dominant species under imidacloprid exposure, perhaps enhancing imida-
cloprid resistance. Herbaspirillum sp. and Amaricoccus sp. also function in nitrogen
fixation (Elbeltagy et al. 2001, Valverde et al. 2003) and intracellular storage of syn-
thesized polymers (Falvo et al. 2001, Lemos et al. 2008) and could contribute to raw
material storage by synthesizing amino acids and proteins.

In this study, the yeasts C. luteolus, P. aphidis, P. antarctica, Capnodiales species,
and C. perangustum were found in N. lugens for the first time. The yeast-like symbi-
ont population of N. lugens was a mixture of many types of yeasts, indicating that
the microbial species in imidacloprid-susceptible and imidacloprid-resistant populations
is variable. Capnodiales species was detected in both N. lugens populations and might
have been carried into the body when these insects fed on infected rice plants. Clado-
sporium perangustum was detected in the resistant population, whereas the other
three yeasts (C. luteolus, P. aphidis, and P. antarctica) were found in only the sus-
ceptible population.

Cladosporium perangustum is abundant in the air, from which this organism
can be absorbed by insects (Hsu et al. 2012). The basidiomycetous yeast C. luteolus
produces polysaccharides (Vorotynskaya et al. 1992), and P. antarctica is an excellent
source of edible single-cell protein and facilitates utilization of waste glycerol (Morita
et al. 2007). Pseudozyma aphidis has biocontrol activity and provides a natural barrier
against some plant pathogens (Avis and Bélanger 2001, Urquhart and Punja 2002).
The manner in which differences in the microorganism distributions in the populations
are related to insecticide resistance merits further study.
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The results reported here highlight the significant differences in the microbial sym-
biont communities of imidacloprid-susceptible and imidacloprid-resistant brown plant-
hopper populations. More evidence is required to assess whether changes in microbial
community structure are related to insecticide resistance.
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