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Abstract The assumption that the invertebrate immune system lacks memory and speci-
ficity has changed over time: many studies now indicate that a primary exposure of the host
to a pathogen increases its resistance to a subsequent lethal challenge, a phenomenon
known as immune priming. One group of insects in which immune priming has been little
investigated is the hematophagous triatomine bugs. Herein, we tested the capability of the
kissing bug Rhodnius pallescens Barber (Hemiptera: Reduviidae; hereafter kissing bugs),
the vector of Chagas disease, to resist entomopathogenic fungi. Laboratory kissing bugs
free of Wolbachia and Trypanosoma spp. as well as kissing bugs collected from the wild
were used for tests with the entomopathogen Beauveria bassiana (Balsamo) Vuillemin
(Hypocreales: Cordycipitaceae). Against laboratory kissing bugs, the fungus remained viru-
lent for 94 d, indicating long-term viability. Kissing bugs collected from the wild that were
exposed to a nonlethal dose of the fungus did not show increased survival against a lethal
dose compared with controls inoculated with the lethal dose. However, kissing bugs inocu-
lated with a nonlethal dose had higher levels of total phenoloxidase than control kissing
bugs. Although the fungus activates the immune system of the kissing bugs, other variables
may influence survival in the face of infection. Moreover, the lethality of the same strain was
lower against wild kissing bugs, suggesting that the presence of symbionts or parasites
influence the fungus–triatome (host) interaction. This work is one of the few studies that
have investigated the fungus–host interaction in terms of immune priming in a hematopha-
gous insect of public health importance. Implications are discussed.
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It is now well accepted that immunological memory is widely distributed in inver-
tebrates (Lanz-Mendoza and Contreras-Garduño 2022). The basic concept is that
primary exposure of the host to a nonlethal dose of the pathogen increases its
resistance to a subsequent lethal challenge, a phenomenon known as immune
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priming (Cooper and Eleftherianos 2017). The benefits of the immune priming
have been reported in the context of within and across developmental stages and
at the transgenerational level (Contreras-Garduño 2016, Khan et al. 2016, Shee-
han et al. 2020, Tetreau et al. 2019).

Despite the popularity of immune priming in recent years, experimental data on
insect immune priming come from relatively few species (Contreras-Garduño
2016, Sułek et al. 2021), making it difficult to assess whether the occurrence is
universal or restricted to specific combinations of hosts and pathogens or experi-
mental conditions and also making it difficult to understand the mechanistic basis
of the phenomenon (Rowley and Powell 2007, Sułek et al. 2021).

Therefore, there is a need to study immune priming in other insects to better
understand the ecological and evolutionary basis across species with different
immune strategies (Prakash and Khan 2022). Immune priming has been documented
in several insect species exposed to bacteria or bacterial molecules (Burciaga et al.
2023, Rosengaus et al. 1999, Roth et al. 2009, Sadd and Schmid-Hempel 2006), pro-
tozoa (Rodrigues et al. 2010), and viruses (Tidbury et al. 2010). As concerns experi-
mentation with entomopathogenic fungi, the number of studies and evidence are
limited, with cases in termites (Rosengaus et al. 1999), Drosophila melanogasterMei-
gen (Pham et al. 2007), Lasius niger Ruzsky ant queens (Gálvez and Chapuisat
2014), and Galleria mellonella (L.) larvae (Sheehan et al. 2021). However, lack of evi-
dence for immune priming against fungi is also reported in G. mellonella (Vertyporokh
and Wojda 2020) and in workers and queens of Formica selysi Seifert (Gálvez and
Chapuisat 2014, Reber and Chapuisat 2012). In some cases, the evidence is conflic-
tive, such as in queens of Crematogaster scutellaris (Olivier) exposed to the fungus
Metarhizium anisopliae (Metchnikoff) Sorokin that can elicit an increased resistance
in the offspring but without developing an increased immune response themselves
(Bordoni et al. 2019). The study of immune priming against fungi in nonmodel insects
may provide a deeper understanding of the phenomenon. A group of insects for which
little research has been done on immune priming is the hematophagous kissing bugs
(Reduvidae: Triatominae).

Immunological studies and immune priming tests conducted with hematophagous
arthropods are from studies on arachnids, such as ticks and mites, due to their medical
importance, with evidence of upregulation (Matsuo et al. 2004, Nakajima et al. 2001)
and increased survival controlled by molecular pathways that are apparently unique to
ticks (Shaw et al. 2017). Work evaluating immune priming in hematophagous insects
has been focused on mosquitoes, responding to virus (Blagrove and Barribeau 2021,
Vargas et al. 2020), bacteria (Kulkarni et al. 2021), and protozoa (Ramirez et al. 2015).

Triatomines provide a novel assemblage of hematophagous species for the
study of immune responses in insects. Carmona-Peña et al. (2021) highlighted the
need to study whether immune memory occurs in triatomines, particularly against
different strains and species of Trypanosoma (Carmona-Peña et al. 2022).
Another crucial element would be to investigate whether the triatomines show
some kind of memory against pathogens such as entomopathogenic fungi. Given
the medical importance of triatomines as vectors of Chagas disease (Stevens
et al. 2011), this work offers a line of research that could provide valuable informa-
tion to develop tools for the control of their populations. Understanding the ento-
mopathogenic fungi–triatomine relationship and its interaction with influential
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factors might provide insight into their population control by the development of
new strains, blocking the transmission of disease-causing agents, and prevent the
emergence of populations resistant to parasites, pathogens, and pesticides (Ortiz-
Urquiza et al. 2015). Herein, we tested the immune priming response in Rhodnius
pallescens Barber (Hemiptera: Reduviidae; hereafter kissing bugs) against the
entomopathogenic fungus B. bassiana by measuring survival and total phenoloxi-
dase in the hemolymph of kissing bugs that were exposed to a low dose of the fun-
gus and later exposed to a lethal dose, compared with the control kissing bugs.

Materials and Methods

Experiment 1: laboratory kissing bugs. Rhodnius pallescens is one of the
main vectors of Trypanosoma cruzi (Chagas) in Panama and the only triatomine
transmitter of Trypanosoma rangeli (Tejera) in the country (Rodriguez and Loaiza
2017). This experiment was intended to be a test of immune priming, but logistical
difficulties caused one of the treatments to be missed (control-Beauveria, see
Experiment 2). However, we considered that the data obtained from this experi-
ment are valuable and worth presenting.

We used kissing bugs that were free of infection by T. cruzi and the bacteria
Wolbachia, a line that has been established at the Centro de Investigaciones Par-
asitarias (CIDEP) of the University of Panama. Kissing bugs were fed every 21 d
with blood from domestic chickens.

Beauveria bassiana was cultured on potato dextrose agar and incubated at
room temperature (25–27°C). The conidial solution was prepared by scraping the
culture surface and placing it in 2 ml of sterile Tween 80 (0.01%) aqueous solution.
The concentration of the fungus was determined by counting conidia with a Neu-
bauer chamber. For the inoculations, almost half of the kissing bugs were inocu-
lated on the thorax with 2 ll of a nonlethal dose of the fungal solution (1 3 102

conidia/ml) and the other half of the kissing bugs were treated with 2 ml of the con-
trol solution. Seven days later, almost half of the kissing bugs inoculated with the
fungus were inoculated with a lethal concentration of the fungal solution (1 3 104

conidia/ml) and the control kissing bugs were inoculated again with the control
solution. All kissing bugs were placed individually in cylindric plastic containers
(460 ml) with a piece of damp cotton inside the container, and the container was
kept in the dark in an environmental chamber. Survival of the kissing bugs was
monitored daily for 94 d.

Experiment 2: wild kissing bugs. Because of an insufficient number of labo-
ratory kissing bugs, we decided to conduct the immune priming test with wild kiss-
ing bugs. We collected kissing bugs in Trinidad de las Minas (08°47.029240,
�080°00.006440) in July and August 2019 by using live-baited adhesive traps fol-
lowing Noireau et al. (2002), but we used T-shaped polyvinyl chloride (PVC) con-
nectors instead of straight shapes. We used the same strain of the fungus as used
in Experiment 1. Half of the kissing bugs were inoculated with 2 ll of a nonlethal
dose of the fungal solution (9 3 102 conidia/ml) on the thorax, and the other half
was inoculated with 2 ll of the control solution. Seven days later, half of each
group was inoculated with a high dose (9 3 107 conidia/ml; Beauveria-Beauveria,
control-Beauveria) and the other half was inoculated with the control solution (con-
trol-control, Beauveria-control). Each kissing bug was placed individually in a
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plastic container as described in Experiment 1. The survival of the kissing bugs
was monitored daily for 40 d.

Experiment 3: total phenoloxidase. We used wild kissing bugs to estimate
the levels of total phenoloxidase (phenoloxidase plus prophenoloxidase). We took
kissing bugs from the “priming” and control groups for the measurements, 3 d after
the inoculation. The head and the last three segments of the abdomen were
removed. The thorax and the remainder of the abdomen were macerated in 60 ml
of 0.2 M sodium cacodylate. The sample was vortexed for 1 min and centrifuged
for 10 min at 4°C at 4,000 rpm. Next, 15 ml of the supernatant was frozen at �20°C
until later use. Subsequently, 4 ml of the supernatant was used, mixed with 10 ml of
phosphate-buffered saline, and 50 ml of trypsin was added to this mixture in micro-
plate wells; the wells were left to rest for 5 min at room temperature. Next, 10 ml of
L-DOPA was added and the absorbance at 492 nm was measured every 10 s for
50 min at 30°C (Castella et al. 2009).

Statistical analysis. Survival data from Experiments 1 and 2 were analyzed
with a survival analysis from the survival package (survreg function, R Core
Team 2023), specifying treatment and sex as factors, with full interaction. The
model was simplified in terms of Akaike’s Information Criterion. We used the
pairwise_survdiff function for pairwise comparisons, with a Bonferroni–Holm
correction.

To determine the levels of total phenoloxidase, we obtained the slope of the
reaction curve during the linear phase of the reaction (maximum velocity). The
results were analyzed using a logarithmic transformation due to the lack of normal-
ity in the data, and a linear regression was used that included as factors the treat-
ment (Beauveria versus control), sex, and interaction of these variables.

Results

Experiment 1: laboratory kissing bugs. Kissing bugs exposed twice to the
control solution survived the entire 94-d experiment (Fig. 1, control-control),
whereas kissing bugs that were subjected to a nonlethal dose during the first
exposure and subsequently to the control solution showed a lower survival
(Fig. 1, Beauveria-control versus control-control; log-rank test, P , 0.0001).
By contrast, individuals that were exposed twice to the fungus also showed a
lower survival than control kissing bugs (Fig. 1, Beauveria-Beauveria versus
control-control; log-rank test, P , 0.0001). Double exposure to the fungus
induced a higher mortality than a single inoculation (Fig. 1, Beauveria-Beauve-
ria versus Beauveria-control, P ¼ 0.003). Sex of the kissing bug had no effect
on survival (χ2 ¼ 0.47, P ¼ 0.50), and there was no interaction between sex
and treatment (χ2 ¼ 0.60, P ¼ 0.75), indicating that both sexes responded simi-
larly to all treatments.

Experiment 2: wild kissing bugs. Inoculation with the lethal dose of the fun-
gus did not reduce the survival of kissing bugs initially inoculated with the control
(Fig. 2, control-control versus control-Beauveria, log-rank test, P ¼ 0.4) or kissing
bugs initially inoculated with a nonlethal dose of the fungus (Fig. 2, Beauveria-con-
trol versus Beauveria-Beauveria, P ¼ 0.5). Control kissing bugs tended to show
higher survival than kissing bugs exposed to the nonlethal dose against the lethal
dose, but this difference was no longer significant after the correction (Fig. 2,
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control-Beauveria versus Beauveria-Beauveria; log-rank test, P ¼ 0.06). Males
tended to die faster than females; however, this difference was not statistically sig-
nificant (χ2 ¼ 3.6, P ¼ 0.06).

Experiment 3: total phenoloxidase. Kissing bugs inoculated with a nonlethal
dose of the fungus had significantly (t ¼ 2.1, P ¼ 0.04) higher levels of total pheno-
loxidase than the control kissing bugs (Fig. 3). There was no effect of sex (t ¼ 0.8,
P ¼ 0.41) and no interaction between sex and treatment (t ¼ �1.3, P ¼ 0.19).

Discussion

We found no evidence that R. pallescens obtains a benefit in terms of survival
because of an immune priming response after exposure to a nonlethal dose of the
pathogenic fungus B. bassiana. In fact, the two experiments that we conducted
strongly indicate that an initial inoculation with a nonlethal dose is deleterious for
the kissing bugs when facing the fungus a second time. The lower mortality of wild
R. pallescens than the laboratory-reared R. pallescens (free of Wolbachia and
Trypanozoma) suggests that symbionts or other environmental factors influence
their resistance to the fungus. However, infection by T. cruzi did not influence the
rate of infection success by B. bassiana for a Colombian population of R. palles-
cens (Agudelo and Moreno 1997). Moreover, the effect of sex on the survival of
the kissing bugs remains unclear because there was a trend of higher resistance
for female wild kissing bugs, which would follow Bateman’s principle of immunity
(Rolff 2002). Yet, in some insects, females are more susceptible to B. bassiana
than males, for example, D. melanogaster (Shahrestani et al. 2018). Moreover,
diet can influence this sexual dimorphic response (McKean and Nunney 2005).
However, there was no effect of sex for laboratory kissing bugs free of Wolbachia
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Fig. 1. Survival curves of laboratory kissing bugs (Rhodnius pallescens)
after two inoculations with the control solution (control-control, n ¼
95), a first inoculation with the fungus and then the control (Beauveria-
control, n ¼ 72), or double inoculation with the fungus (Beauveria-
Beauveria, n ¼ 45).
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and Trypanozoma, again suggesting that symbionts may influence a potential sex-
ual dimorphism in resistance to the fungus. Symbiont-driven sexual dimorphism in
the immune response occurs in Drosophila, and Wolbachia mediates a stronger
protection in males against Pseudomonas aeruginosa (Gupta et al. 2017). Further
experiments might elucidate the effect of sex on the immune response of triato-
mines and how sex interacts with other variables (e.g., Wolbachia, Trypanosoma,
diet, age).

Similar to our results, high mortality of laboratory-reared Colombian R. palles-
cens against B. bassiana has been reported by Pineda Gutierrez et al. (2003) and
Saldarriaga et al. (2005); however, these two studies used higher doses (105–108

conidia/ml) than our dose (104), highlighting the potential large geographic varia-
tion in virulence of the fungus. A striking result was that the fungus remained viru-
lent until 94 d under the laboratory conditions; however, further studies in the field
are needed because some strains of B. bassiana remain virulent for a few weeks
after application in the field (Daud et al. 2019). Moreover, it is likely that variation in
susceptibility to the fungus (Wang et al. 2020) occurs across Panamanian popula-
tions of R. pallescens, perhaps in part explaining the variation between laboratory
and wild kissing bugs in our study.

Despite that the survival experiment does not provide evidence of immune
priming, the increased level of total phenoloxidase suggests that some form of
immunization occurs. In G. mellonella larvae, nonlethal dose injections of Candida
albicans (C.-P. Robin) Berkhout induced phenoloxidase activity, but injection of
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Fig. 2. Immune priming test with wild kissing bugs (Rhodnius pallescens).
Survival curves after two inoculations with the control solution (con-
trol-control, n ¼ 38), a first inoculation with the control and then a
lethal dose of the fungus (control-Beauveria, n ¼ 38), a first inoculation
with a nonlethal dose of the fungus and then the control (Beauveria-
control, n ¼ 38), and double inoculation with the fungus: first nonlethal
and then lethal (Beauveria-Beauveria, n ¼ 40).
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the lethal dose resulted in strong inhibition of this enzyme after 24 h (Vertyporokh
and Wojda 2020). Still, levels of phenoloxidase do not necessarily correlate with
survival against a pathogen (Adamo 2004, Mucklow et al. 2004, González-San-
toyo and Córdoba-Aguilar 2012, Kasianov et al. 2017), highlighting that disease
resistance and immunity assays may not always correlate, depending on the
host–pathogen combination (for review, see Adamo 2004). Multiple immunity
assays may be required to improve our understanding. Moreover, production of
phenoloxidase for triatomines may be more complex if its production can be influ-
enced by the species of Trypanosoma infecting the host (Mello et al. 1995), a vari-
able that remained uncontrolled for our wild kissing bugs that can be infected by
two Trypanosoma species (Sousa 2002).

Another potential explanation may involve the period of immunization (7 d)
being too extended; thus, the phenoloxidase levels had already decreased and
provided no significant defense against the infection. Alternatively, some antimi-
crobial peptides (AMPs) that contribute to defense against fungal infection may
not have yet been produced at sufficient levels at the time of the lethal challenge
(day 7). For example, in the kissing bug Triatoma infestans Klug, expression of a
gene (TiPPO) regulating production of prophenoloxidase (the precursor of pheno-
loxosidase) peaked at day 9 after inoculation with B. bassiana and two other
genes of the humoral immune system peaked at 6–12 d (Lobo et al. 2015). This
delayed response may be an adaptation to the slower invasion and replication pro-
cesses of pathogenic fungi (Salcedo-Porras and Lowerberger 2021); therefore, we
may have missed the time of maximal AMP levels. Further work should evaluate
different times for measuring immune components and application of the lethal
challenge to investigate this possibility.

Overall, given its virulence, apparent long viability, and apparent lack of a
immune priming response from the host, B. bassiana seems a good candidate for

Control Beauveria

lo
g(
Vm

ax
)

Fig. 3. Total phenoloxidase levels (measured as maximum speed [Vmax]) in
samples of kissing bugs (Rhodnius pallescens) inoculated with a
nonlethal dose of the entomopathogenic fungus Beauveria (n ¼ 22)
and with the control solution (n ¼ 22).
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biological control of R. pallescens, as with applications used against other triato-
mines (Carmona-Peña et al. 2021, Garcia 2013, Pedrini et al. 2009). In addition,
the sublethal dose of the fungus caused slow, steady death rates and it would be
interesting to investigate potential effects on the kissing bugs, such as reducing
feeding rates and fecundity (e.g., Blanford et al. 2012, Ondiaka et al. 2015, Scholte
et al. 2011) or preventing the transmission of Trypanosoma parasites across kiss-
ing bugs, similar to that found for other systems (Blanford et al. 2005). More work
is needed to understand how multiple pathogenic bacteria, fungi, and trypano-
somes drive the use of multiple AMPs in triatomines while not affecting their
essential microbial symbionts (Salcedo-Porras and Lowerberger 2021). Our work
strongly points at the need to consider multiple factors while studying immune
priming in triatomines, such as the presence of the Trypanosoma parasite, the
symbiont Wolbachia, and the potential effect of sex, among other factors.
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