De novo Analysis of *Heortia vitessoides* (Lepidoptera: Crambidae) Transcriptome and Identification of Putative Cytochrome P450 Monooxygenase Genes¹

Jie Cheng, Zihao Lyu, Chunyan Wang, Jingxiang Chen, and Tong Lin²

College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangdong Province, Guangzhou, 510642, P.R. China

J. Entomol. Sci. 54(3): 293-315 (July 2019)

Abstract We analyzed a transcriptome generated from four developmental stages of Heortia vitessoides Moore (Lepidoptera: Crambidae), a defoliator of the agarwood tree, Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae). A total of 110.53 Mb clean reads were produced, and de novo assembled into 42,946 unigenes of an average length of 1,059 base pairs (bp). Among these unigenes, 22,106 (51.47%) showed significant similarity (E-value <10⁻⁵) to known proteins in the National Center for Biotechnology Information (NCBI) nonredundant database. Gene ontology (GO), eukaryotic ortholog groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to classify the functionality of unigenes. Moreover, 46 putative cytochrome P450 (CYP) monooxygenase genes were identified from this dataset. These CYP genes were classified into four clans consisting of 22 families and 34 subfamilies. The expression profiles of genes belonging to CYP4 and CYP6 families and exposed to half the lethal concentrations (LC₅₀) of chlorantraniliprole and beta-cypermethrin were determined by real-time reverse transcription-quantitative PCR (RT-qPCR). The results showed that the transcription levels of eight (CYP4M39, CYP6AB49, CYP6AB53, CYP6AB61, CYP6AE17, CYP6AW1, CYP6BD6, CYP6CV1) and five (CYP6AB10, CYP6AB53, CYP6AE12, CYP6AE17, CYP6BD6) genes significantly increased in the fourth-instar larvae following exposure to the insecticides chlorantraniliprole and beta-cypermethrin, respectively. Therefore, these genes are potential candidates involved in the detoxification of these two insecticides. Further studies utilizing the RNA interference approach are required to enhance our understanding of the functionality of these genes in this forest pest.

Key Words transcriptome, cytochrome P450 monooxygenase, insecticide treatment, expression pattern

Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae) produces the fragrant agarwood that is widely used in traditional medicine and the incense industry (Jin et al. 2016; Wen et al. 2009). *Heortia vitessoides* Moore (Lepidoptera: Crambidae) is considered to be the most severe pest of *A. sinensis* and ranges from India, Nepal, China, and Sri Lanka through Southeast Asia and the East Indies to Queensland, the New Hebrides, and Fiji. In southern China, the insects have seven or eight generations per year, and the larvae feed on the leaves of *A. sinensis*,

¹Received 19 July 2018; accepted for publication 20 August 2018.

²Corresponding author (E-mail: lintong@scau.edu.cn).

causing significant economic losses (Qiao et al. 2012; Wen et al. 2017). Carbamates, pyrethroids, anthranilic diamides, and plant-derived insecticides such as fenoxycarb, beta-cypermethrin, chlorantraniliprole, and matrine have been used to control *H. vitessoides* infestations. However, these insecticides have become less efficient, even as mixtures or at relatively high doses (Chen et al. 2011; Lu et al. 2014; Su 1994).

The cytochrome P450 (*CYP*) monooxygenases, a large and complex gene superfamily of heme-thiolate proteins, are ubiquitously expressed in almost all living organisms (Yu et al. 2015). Insect *CYPs* can be divided into four major clans: three microsomal *CYP* clans (*CYP2, CYP3*, and *CYP4*) and a mitochondrial *CYPs* clan (Feyereisen 2011). In insects, *CYPs* perform many important functions including involvement in biosynthetic pathways of juvenile hormones, ecdysteroids, and pheromones which are closely related to insect growth, development, and reproduction (Lao et al. 2015). Moreover, insect *CYPs* are well-known for their vital role in the detoxification of various types of synthetic insecticides such as chlorantraniliprole (Hu et al. 2014), malathion (Li et al. 2016), and chlorpyrifos (Wang et al. 2017). Increased *CYP* activity has been reported to be one of the main reasons for insecticide resistance in other lepidopteran species such as *Helicoverpa armigera* Hübner (Zhou et al. 2010), *Cnaphalocrocis medinalis* Guenée (Liu et al. 2015), and *Cydia pomonella* Linnaeus (Bosch et al. 2018).

The identification and functional analysis of candidate *CYP* genes are important first steps in investigating the mechanisms of insecticide resistance in insects. Nextgeneration sequencing techniques such as RNA sequencing (RNA-seq), aided by decreasing costs and technical advances, have become valuable tools that allow vast amounts of genetic information to be acquired from nonmodel organisms without prior sequence knowledge (Liu et al. 2016). For *H. vitessoides*, which does not have a sequenced genome, we deposited three transcriptomes in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA; adult: SRX3035102, female antennae: SRX3136158, male antennae: SRX3136160) (Cheng et al. 2017). However, extensive genomic and transcriptomic sequences are still required for *H. vitessoides*.

In the present study, we sampled *H. vitessoides* eggs, larvae, pupae, and adults and used a BGISEQ-500 sequencing platform to generate a large-scale dataset, utilizing bioinformatics analyses to focus on the genes encoding putative *CYP*s. We identified 46 putative *CYP* genes in *H. vitessoides*. Moreover, the expression profiles of genes belonging to *CYP4* and *CYP6* families exposed to half the lethal concentrations (LC_{50}) of chlorantraniliprole and beta-cypermethrin were determined using real-time reverse transcription-quantitative PCR (RT-qPCR). To the best of our knowledge, this is the first report of the identification and characterization of multiple *CYP* genes in this forest pest.

Materials and Methods

Insect rearing and sample collection. *Heortia vitessoides* eggs and larvae were collected in May 2017 from an *A. sinensis* plantation (N 22°01′, E 110°25′) in Huazhou, Guangdong, China. No chemical treatment was applied before or during collection. All insects were reared in the laboratory under conditions of 26°C with 70

 \pm 2% relative humidity and maintained at a 14 h:10 h light:dark cycle. Eggs, larvae, pupae, and adults were collected from that colony and were pooled together, then immediately frozen in liquid nitrogen and stored at -80°C for total RNA extraction.

RNA sample preparation. Total RNA was extracted using the E.Z.N.A.[™] Total RNA kit II (OMEGA Biotec, Norcross, GA, USA) following the supplier's instructions and then treated with DNase I (Invitrogen, Life Technologies, Carlsbad, CA, USA). A Nanodrop 2000 spectrophotometer (NanoDrop Products, Wilmington, DE, USA) was used to check sample purity while a Qubit 2.0 fluorometer (Life Technologies, Gaithersburg, MD, USA) and Quantifluor-ST fluorometer with Agilent 2100 Bioanalyzer (Promega, Madison, WI, USA) were used to measure the concentration and integrity, respectively.

cDNA library construction. The qualified RNA samples were used for transcriptome sequencing. The first step involved purifying the poly-(A)-containing mRNA molecules using poly-T oligo-attached magnetic beads. Following purification, the mRNA was fragmented using divalent cations under an elevated temperature. The cleaved RNA fragments were reverse transcribed to form the first-strand cDNA using reverse transcriptase and random primers. This was followed by second-strand cDNA synthesis using DNA Polymerase I and RNase H. A single "A" base was added to these cDNA fragments, followed by the ligation of DNA adapters. The products were then purified and enriched with PCR amplification. We then quantified the PCR yield using Qubit and pooled samples to generate a single strand DNA (ssDNA) circle, which formed the final library. The cDNA library was sequenced using the BGISEQ-500 platform (BGI, Shenzhen, China). The raw reads were saved as FASTQ files and deposited in the NCBI SRA with the accession number SRX4045498.

De novo assembly and functional annotation. Prior to assembly, we obtained clean reads from the raw data by removing reads containing adaptor sequences, more than 5% unknown nucleotides, more than 50% bases with *Q*-value \leq 20, and empty reads. These clean reads were then *de novo* assembled into unigenes using the short reads assembling program Trinity (Grabherr et al. 2011). To acquire comprehensive information on gene functions, assembled unigenes over 150 bp in length were searched against the NCBI nonredundant protein sequences (Nr), NCBI nucleotide (Nt), eukaryotic ortholog groups (KOG), SwissProt, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases using BLASTx and BLASTn with an *E*-value $<10^{-5}$. Blast2GO (Conesa et al. 2005) was used for gene ontology (GO) annotation with an *E*-value $<10^{-5}$ based on the protein annotation results of the Nr database. InterPro functional annotation was performed using InterProScan5 (Quevillon et al. 2005).

Gene identification and bioinformatic analyses. The BLASTn program was used to identify candidate unigenes encoding putative *CYP* monooxygenase genes in *H. vitessoides* (*HvCYP*s) using available sequences of these proteins from lepidopteran insects. All candidate genes were manually checked using BLASTx on the NCBI website. All putative *HvCYPs* were named in accordance with David R. Nelson to maintain consistency in the nomenclature.

Open reading frames (ORFs) were predicted using the ORF Finder (http://www. ncbi.nlm.nih.gov/gorf/gorf.html). The functional domains and core catalytic residues were predicted by searching the Conserved Domain Database (https://www.ncbi. nlm.nih.gov/Structure/cdd/wrpsb.cgi). Amino acid sequences were aligned with MAFFT (http://mafft.cbrc.jp/alignment/server/clustering.html). Phylogenetic trees were constructed using the MEGA5.0 based on the neighbor-joining method with the *p*-distance model, including trees of 34 putative *HvCYP*s (amino acid residues >300aa) and three insects (*Drosophila melanogaster* Meigen, *Apis mellifera* L., and *Bombyx mori* L.) (Tamura et al. 2011). Node support was assessed using a bootstrap procedure based on 1,000 replicates, and node support values <50% are not shown.

Insecticide treatment. Chlorantraniliprole and beta-cypermethrin were purchased from Fengle Agrochemical Co., Ltd., (Hefei, China) and diluted with analytical-grade acetone to make a working solution, 7.7×10^{-4} mg L⁻¹ for chlorantraniliprole and 8.9×10^{-5} mg L⁻¹ for beta-cypermethrin (LC₅₀ values) (Chen et al. 2011). The freshly-molted fourth-instar larvae were selected and starved for 2 h. The leaf-dipping method was employed to investigate insecticidal activity (Chen and Zhang 2015). Fresh *A. sinensis* leaves were dipped into the pesticide solutions for 10–15 s and air dried at 26°C, then fed to the starved larvae. Control insects were fed with *A. sinensis* leaves with acetone only. Insecticide-treated and control insects were collected after 24 h, immediately frozen in liquid nitrogen, and stored at -80° C prior to RNA extraction. Each sample consisted of 15 larvae with three independent replicates.

Real-time reverse transcription-quantitative PCR (RT-qPCR). To determine the transcriptional changes of six CYP4 and 12 CYP6 family genes in the fourthinstar larvae after exposure to the LC₅₀ of chlorantraniliprole and beta-cypermethrin, RT-qPCR was performed using cDNA prepared from insecticide-treated and control insects. Total RNA was extracted as described above. First-strand cDNA was synthesized from 2 µg total RNA using the PrimeScript® RT reagent kit with gDNA Eraser (Takara Bio, Otsu, Japan) and then immediately stored at -80°C for further use. The RT-qPCR was performed using SYBR® Premix Ex TaqTM II (Takara Bio, Otsu, Japan). Each reaction (20-µL volume) contained 2 µL cDNA, 10 µL SYBR Premix Ex Tag, 0.4 μ L forward and reverse primers (10 μ M), and 7.2 μ L RNase-free double distilled water. The gene-specific primers (Table 1) were designed using Primer Premier 5.0 (Premier Biosoft International, Palo Alto, CA, USA) and synthesized by TSINGKE Biotech Co., Ltd. (Guangzhou, China). The housekeeping gene β -actin (GenBank accession number MG132199) was used as reference gene in the RT-gPCR experiments (Cheng et al. 2018). RT-gPCR on the cDNA products was carried out in 96-well plates using a Light Cycler 480 (Roche Diagnostics, Indianapolis, IN, USA). The amplification conditions were as follows: initial denaturation at 95°C for 5 min; 40 cycles at 95°C for 10 s and 60°C for 20 s; and cooling at 40°C for 30 s. Negative controls were nontemplate reactions (replacing cDNA with diethyl pyrocarbonate water), and the results were analyzed using the LightCycler[®] Real-Time PCR system. Three biological and technical replicates each were set for RT-gPCR analysis. The quantity of CYP mRNAs was calculated using the $2^{-\Delta\Delta Ct}$ method (Pfaffl 2001).

Statistical analysis. Gene expression data are presented as the means \pm standard deviation (SD) of three independent replicates. To compare the differences in gene expression between the insecticide-treated and control larvae, a paired Student's *t*-test was performed. *P* < 0.05 was considered statistically significant. Data analysis was conducted using SPSS 18.0 (SPSS, Inc., Chicago, IL, USA).

Fig. 1. Size distribution of the assembled unigenes from *Heortia vitessoides* transcriptome.

Results

Sequencing and *de novo* **assembly.** We performed next-generation sequencing of the cDNA library constructed from the eggs, larvae, pupae, and adults of *H. vitessoides* using the BGISEQ-500 platform. Transcriptomic sequencing provided 117.04 Mb raw reads. After removing adaptor, low quality, and N-containing sequences, 110.53 Mb clean reads were generated. After assembly, we obtained 42,946 unigenes with an average length of 1,059 bp and an N50 of 1,944 bp (Table 2). The size distribution of the assembled unigenes is shown in Fig. 1.

Sequence annotation. The number and percentage of matched unigenes at different values is shown in Table 3. In summary, 22,106 (51.47%), 12,455 (29.00%), 15,297 (35.62%), 16,833 (39.20%), 14,837 (34.55%), 15,006 (34.94%), and 4,510 (10.50%) unigenes had homologous sequences in the Nr, Nt, Swiss-Prot, KEGG, KOG, Interpro, and GO databases, respectively. The total unigenes annotated by any of the seven functional databases was 56.11%. Only 4.76% of the unigenes were annotated in all databases. For species distribution, the highest match percentage was to *H. armigera* (26.18%) sequences followed by *Amyelois transitella* Walker (24.10%), *B. mori* (8.98%), and *Papilio xuthus* Linnaeus (6.64%, Fig. 2).

GO annotation was used to classify the function of unigenes according to the GO terms (Fig. 3). In biological processing terms, "cellular processes" (1,632), "metabolic processes" (1,403), and "biological regulation" (536) were the most abundant. In cellular component terms, "cell" (1,504), "cell part" (1,481), and

Gene	Direction	Sequence (5′→3′)	Product Size (base pairs)	PCR Type
CYP4G113	F	CCGACCCTTGAAGAACTG	226	RT-qPCR
	R	ATCGTGTCCACTTCTTCC		
CYP4G90	F	GCTGTAATGAAGATGTGCG	221	RT-qPCR
	R	TTCTGTGGGAGTGGTGGT		
CYP4M39	F	TATTGACGCCATCCTTCC	223	RT-qPCR
	R	AATGGCTTGCTTGTAGGC		
CYP4L27	F	AGGGTAACATCACGGGGT	165	RT-qPCR
	R	GTAGTTGTATCGTGCCCC		
CYP4G24	F	GTGTTATGCCTCCTTGGT	248	RT-qPCR
	R	TATTACCACTGTCGCTCC		
CYP4AU10	F	ATGGATTGTTCGTCGCTC	222	RT-qPCR
	R	TCACCCATTGCCGTTTCA		
CYP6AE17	F	AAGGTTGAAGTTCCAGTGAC	216	RT-qPCR
	R	GGTATGGAACCTCAGTAACACA		
CYP6AW1	F	GAAAGGCGTAATACAGGG	246	RT-qPCR
	R	AGGCACCATACTGCTCAA		
CYP6BD6	F	CATAGAGTTGAAGAATGGCG	153	RT-qPCR
	R	CTCCTGGCATTTTTCGTTCT		
CYP6AB47	F	ACGCTAACTCGCTGAATG	204	RT-qPCR
	R	GACGGTTTGTAGTTTCGC		
CYP6AB53	F	AACTCCAAGTGTTAGCCG	256	RT-qPCR
	R	ATCAGGTGAAACGGCATC		
CYP6AN4	F	GCAAGAGATTGACGCCTA	217	RT-qPCR
	R	GAGGGAGTTTTCGTTGCT		
CYP6CV1	F	AGAAGTGATTGGGTCGTG	208	RT-qPCR
	R	CAGTGTGAACCAAGTCCA		
CYP6AB49	F	GCCCAGAACGAGATAGAT	199	RT-qPCR
	R	ACAAGTGTGCCTTCGTCA		
CYP6AB61	F	CCCAGAGATAGACTTGACC	261	RT-qPCR
	R	TGCTGGTTCAACGGTGTA		

Table 1. Primers used in this study (F = forward; R = reverse).

Gene	Direction	Sequence (5′→3′)	Product Size (base pairs)	PCR Type
CYP6CT1	F	AGACTACATCAGTGCCATTG	202	RT-qPCR
	R	TTTATCCAGACACCTCCC		
CYP6AE12	F	TTGTTCCTGTGCTTTCGG	164	RT-qPCR
	R	TTGAAGCCCAATCCGTAG		
CYP6AB10	F	TTACTACGGAACAAGGGC	280	RT-qPCR
	R	CCGTCTTGTGGGGTATTA		
β-actin	F	GTGTTCCCCTCTATCGTGG	119	RT-qPCR
	R	TGTCGTCCCAGTTGGTGAT		

Table	1.	Continued.
-------	----	------------

"membrane" (1,247) were the highest classified. In molecular function terms, genes involved in binding (2,085), catalytic activity (1,655), and structural molecule activity (307) were the most abundant.

In total, 14,837 unigenes were assigned to 25 KOG functional categories (Fig. 4). Of these categories, "general function prediction only" represented the largest group, containing 3,775 unigenes, followed by "signal transduction mechanisms" (3,230) and "function unknown" (1,689). The "nucleotide transport and metabolism" (189), "coenzyme transport and metabolism" (134), and "cell motility" (53) categories were the smallest clusters represented.

To understand the biological pathways active in *H. vitessoides*, the sequences were mapped to reference canonical pathways in KEGG (Fig. 5). In summary,

Table	2.	Overview	of	transcriptome	of	Heortia	vitessoides
-------	----	----------	----	---------------	----	---------	-------------

GC (%)	41.85
N50 of unigene	1,944
Mean length of unigenes	1,059
Total length of unigenes	45,486,000
Total number of unigenes	42,946
Clean reads Q20 (%)	98.50
Clean reads ratio (%)	94.44
Total clean bases (Gb)	11.05
Total clean reads (Mb)	110.53
Total raw reads (Mb)	117.04

^a GC = GC(%): the percentage of G and C bases in all transcripts.

Values ^a	Number of Unigenes	Percentage (%)
Total	42,946	100
Nr	22,106	51.47
Nt	12,455	29.00
Swiss-Prot	15,297	35.62
KEGG	16,833	39.20
KOG	14,837	34.55
Interpro	15,006	34.94
GO	4,510	10.50
Intersection	2,043	4.76
Overall	24,098	56.11

Table 3. Summary of unigene annotations.

^a Nr = nonredundant protein sequences; Nt = NCBI nucleotide; KOG = eukaryotic ortholog groups; KEGG = Kyoto Encyclopedia of Genes and Genomes; GO = gene ontology.

Fig. 2. Species distribution. Species distribution of the unigene BLASTx matches against the nonredundant protein database, with a cut-off *E*-value of E^{-5} . The first hit of each unigene was used for analysis, and the proportion of homologous sequences in each species is shown.

Fig. 3. Gene ontology classifications of unigenes. The results are assigned into three main categories: biological process, cellular component, and molecular function.

16,833 unigenes were classified into six groups, "cellular processes," "environmental information processing," "genetic information processing," "human diseases," "metabolism," and "organismal systems." "Transport and catabolism" (1,262), "signal transduction" (2,451), "translation" (1,001), "cancers: overview" (1,574), "global and overview maps" (2,277), and "endocrine system" (1,405) were the dominant pathways in each group, respectively.

Identification and characterization of CYP genes from *H. vitessoides.* In total, 46 putative *CYP* genes were identified in the *H. vitessoides* transcriptome. Of these, only six genes had completed ORFs while the remaining 40 genes consisted of incomplete cDNAs, missing a portion of the sequence (Table 4). According to the standard nomenclature, the 46 *HvCYP*s were divided into 22 families and 34

Fig. 4. Number of *Heortia vitessoides* unigenes in 25 clusters of eukaryotic orthologous group (KOG) functional classes.

subfamilies (Table 4). The largest family was the *CYP6* family, which included 12 genes. These *CYP* genes have been deposited in GenBank with the accession numbers MH236440–MH236485 (Table 4).

Information from the BLASTx search of the best hits for all 46 *CYP* genes is provided in Table 4. All *HvCYPs* genes had a relatively high sequence identity (57–93%) with their respective orthologs from other lepidopteran species. Multiple sequence alignment analysis revealed that these *CYP* genes had five conserved domains; a helix-C (WxxxR), helix-I (GxE/DTT/S), helix-K (ExLR), PERF (PxxFxPE/DRE) and heme-binding motif (PFxxGxRxCxG/A) (Fig. 6) (Ai et al. 2011). However, one microsomal *CYP* (CYP49A1) lacked three residues in the heme-binding motif.

A phylogenetic analysis was conducted to evaluate the relationships between the *HvCYPs* and *CYPs* from three other model insect species. In the phylogenetic

Fig. 5. Distribution of *Heortia vitessoides* unigenes in the Kyoto Encyclopedia of Genes and Genomes (KEGG).

tree (Fig. 7), the 34 *HvCYPs* genes were allocated to four groups representing different *CYP* clans including nine within the *CYP4* clan, 17 in *CYP3*, two in *CYP2*, and six within the mitochondrial clan. The *HvCYPs* from four *CYP* clans were clustered into different subfamilies, such as *CYP6AE* and *CYP9G* from the CYP3 clan, *CYP302A* and *CYP315A* from Mito clan, *CYP18A* from CYP2 clan, and *CYP341A* and *CYP340A* from the *CYP4* clan (Fig. 7). This tree demonstrated that there is a close relationship between *CYP* genes from *B. mori* and *H. vitessoides* (Fig. 7).

Expression of CYP genes in larvae exposed to insecticides. Transcriptional changes of the *CYP4* and *CYP6* family genes in the fourth-instar larvae, after exposure to LC₅₀ of chlorantraniliprole and beta-cypermethrin, were determined by RT-qPCR. In chlorantraniliprole-treated insects, the expression of eight genes (*CYP4M39, CYP6AB49, CYP6AB53, CYP6AB61, CYP6AE17, CYP6AW1, CYP6BD6*, and *CYP6CV1*) was significantly higher than that in the control insects after 24 h of chlorantraniliprole exposure, and the expression of three genes (*CYP6AB10, CYP6AB47,* and *CYP6CT1*) was markedly downregulated compared with that in the control insects (Fig. 8). In the beta-cypermethrin-treated insects, the expression of five genes (*CYP6AB10, CYP6AB53, CYP6AE12, CYP6AE17,* and *CYP6BD6*) was significantly up-regulated compared with that in the control insects (Fig. 8). Moreover, beta-cypermethrin significantly decreased the mRNA levels of *CYP4G24* in the treated insects compared with that in the control insects (Fig. 8).

vitessoides.
H.
<u>ם</u> .
identified
nonooxygenases
<u> </u>
(P)
CVP) r
P450 (CYP) r
cytochrome P450 (CYP) r
46 cytochrome P450 (CYP) r
of 46 cytochrome P450 (CYP) r
Is of 46 cytochrome P450 (CYP) r
Details of 46 cytochrome P450 (CYP) r
4. Details of 46 cytochrome P450 (CYP) r

	ccession Number	/57338.1	/57336.1	022828927.1	/57329.1	91189.1	/57332.1	/57334.1	54871.1	91191.1	20608.1	20608.1	54885.1	/57301.1	/57360.1	/57306.1	98000.1
	۲ –	AHM	AHM	XP_(AHM	AJN	AHM	AHM	AID5	AJN	AFP2	AFP:	AID5	AHM	AHM	AHM	ASO
x hit	%ID	86	80	84	91	82	63	77	68	68	64	72	1	73	73	73	76
p BLAST	<i>E</i> -value	6E-65	0	6E-153	0	0	0	0	7E-177	0	0	0	0	0	7E-128	0	4E-57
	Species	Chilo suppressalis	Chilo suppressalis	Spodoptera litura	Chilo suppressalis	Cnaphalocrocis medinalis	Chilo suppressalis	Chilo suppressalis	Helicoverpa armigera	Cnaphalocrocis medinalis	Spodoptera littoralis	Spodoptera exigua	Helicoverpa armigera	Chilo suppressalis	Chilo suppressalis	Chilo suppressalis	Spodoptera exigua
	Protein Length	~113	>335	>247	558	>362	>465	>460	>353	>474	>419	>449	512	>487	>238	464	>117
	Accession Number	MH236440	MH236446	MH236445	MH236442	MH236441	MH236444	MH236443	MH236447	MH236448	MH236449	MH236450	MH236462	MH236454	MH236458	MH236455	MH236459
	Gene ID	Unigene14246	Unigene38145	Unigene37564	CL2157.Contig1	CL103.Contig1	Unigene12830	Unigene318	CL5035.Contig1	Unigene555	CL4466.Contig2	CL6684.Contig1	CL1413.Contig3	CL5971.Contig1	Unigene32952	Unigene177	Unigene20228
	Gene Name	CYP340AK1	CYP4AU10	CYP4G24	CYP4G90	CYP4G113	CYP4L27	CYP4M39	CYP367A2	CYP367B12	CYP366D1	CYP341A11	CYP6AB10	CYP6AB47	CYP6AB49	CYP6AB53	CYP6AB61
	Subfamily	AK	AU	IJ			_	Σ	A	Ю	D	A	AB				
	Family	CYP340	CYP4						CYP367		CYP366	CYP341	CYP6				
	СҮР Clan	CYP4											СҮРЗ				

304

<u> </u>
σ
ā
W
_
~
_
100
=
<u> </u>
0
<u>v</u>
c
-
and its
~
ω
-
-0
-
U

							To	p BLAST	x hit	
СҮР Clan	Family	Subfamily	Gene Name	Gene ID	Accession Number	Protein Length	Species	<i>E</i> -value	CI%	Accession Number
		AE	CYP6AE12	CL1321.Contig1	MH236461	>466	Helicoverpa armigera	0	63	AID54888.1
			CYP6AE17	CL1836.Contig4	MH236451	>208	Helicoverpa armigera	1E-101	68	AID54892.1
		AN	CYP6AN4	Unigene7122	MH236456	>362	Spodoptera littoralis	2E-172	65	AFP20585.1
		AW	CYP6AW1	CL2606.Contig1	MH236452	>470	Chilo suppressalis	0	79	AHW57309.1
		BD	CYP6BD6	CL4841.Contig1	MH236453	>450	Manduca sexta	0	73	ADE05586.1
		СТ	CYP6CT1	Unigene34218	MH236460	>159	Chilo suppressalis	4E-90	80	AHW57310.1
		S	CYP6CV1	Unigene8047	MH236457	>483	Cnaphalocrocis medinalis	0	75	AJN91170.1
	СҮР9	A	CYP9A38	CL5223.Contig2	MH236464	>509	Cnaphalocrocis medinalis	0	72	CAZ65619.1
			CYP9A78	Unigene15154	MH236468	>445	Cnaphalocrocis medinalis	0	61	AJN91175.1
			CYP9A79	CL4599.Contig1	MH236463	>481	Cnaphalocrocis medinalis	0	20	AJN91176.1
			CYP9A80	Unigene7958	MH236467	>515	Cnaphalocrocis medinalis	0	59	AJN91177.1
		U	CYP9G3	Unigene31738	MH236469	>427	Bombyx mori	1E-175	57	NP_001108456.1
			CYP9G18	CL6741.Contig1	MH236465	>496	Cnaphalocrocis medinalis	0	61	AJN91173.1

							Тор	BLAST X I	it	
CYP Clan	Family	Subfamily	Gene Name	Gene ID	Accession Number	Protein Length	Species	<i>E</i> -value	QI%	Accession Number
			CYP9G19	Unigene5353	MH236466	>490	Cnaphalocrocis medinalis	0	67	AJN91174.1
	CYP354	٨	CYP354A3	CL2408.Contig1	MH236470	>480	Helicoverpa armigera	0	70	AKP80585.1
	CYP321	ш	CYP321F5	Unigene11221	MH236471	>476	Cnaphalocrocis medinalis	0	74	AJN91178.1
	CYP338	۷	CYP338A1	Unigene37084	MH236472	>226	Cnaphalocrocis medinalis	1E-108	69	AJN91182.1
CYP2	CYP304	ш	CYP304F17	CL1552.Contig1	MH236473	>201	Cnaphalocrocis medinalis	2E-100	78	AJN91164.1
	CYP18	A	CYP18A1	Unigene19666	MH236474	539	Chilo suppressalis	0	87	AHW57292.1
	CYP15	O	CYP15C1	CL4729.Contig2	MH236475	>177	Chilo suppressalis	1E-93	75	AHW57293.1
	CYP307	۷	CYP307A2	Unigene35398	MH236476	>298	Chilo suppressalis	0	06	ALX37958.1
	CYP305	Ш	CYP305B1	Unigene16863	MH236477	486	Cnaphalocrocis medinalis	0	72	AJN91165.1
Mito.	CYP333	Ш	CYP333B28	CL1813.Contig1	MH236478	>343	Cnaphalocrocis medinalis	0	87	AJN91161.1
	CYP301	۷	CYP301A1	Unigene6071	MH236479	527	Cnaphalocrocis medinalis	0	93	AJN91157.1
		Ш	CYP301B1	Unigene9861	MH236480	>440	Chilo suppressalis	0	83	AHW57352.1

306

Table 4. Continued.

<u> </u>
σ
(۵)
=
2
_
-
=
<u> </u>
0
~
U.
- 1
~
4
<u> </u>
0
.00
⊢.

							То	p BLAST	k hit	
CYP Clan	Family	Subfamily	Gene Name	Gene ID	Accession Number	Protein Length	Species	<i>E</i> -value	©%	Accession Number
	CYP302	A	CYP302A1	Unigene3794	MH236481	>464	Spodoptera littoralis	0	69	ACM46003.1
	CYP314	A	CYP314A1	Unigene29112	MH236482	>101	Spodoptera littoralis	3E-49	82	ACM66924.1
	CYP49	A	CYP49A1	Unigene2901	MH236483	>490	Helicoverpa armigera	0	87	XP_021184504.1
	CYP339	A	CYP339A1	Unigene1926	MH236484	>492	Cnaphalocrocis medinalis	0	75	AJN91162.1
	CYP315	A	CYP315A1	Unigene16497	MH236485	>293	Manduca sexta	2E-131	64	ABC96070.1

		Helix-C	Helix-I	Helix-K	PERF motif	Heme-binding domai
4	CYP340AK1*	WKNHR				
CYP4	CYP4G113*		GHDTT	ESLR	PEVEDPDNE	PESAGPRSCVG
	CYP4G90	WRSHR	GHDTT	ETLR	PNKEDPDNE	PFSAGPRSCVG
	CYP4M39	WQHRR	GHDTT	ETLR	PLKFDPDRF	PESAGPRNCIG
	CYP4L27	WKAHR	GHDTT	ESLR	PLEFRPERF	PFSAGPRNCIG
	CYP4G24*		GHDTT	ESLR	PDVFNPDNF	PESAGPRSCVG
	CYP4AU10*	WKMHR	GNDTT	ETMR	ADQENENE	
	CYP367A2	WRNHR	SQEAS	ETLR	PFKVKPERF	PESLOPMDCLG
	CYP367B12	WRKHR	SQEAS	EVLR	PDAFDPRRF	PESLGPMDCLG
	CYP366D1	WKRSI	GQUIV	ETLR	VLEYRPERW	AFSYGRRSCIG
	CYP341A11	WRRRR	GTDTS	ETLR	AEEFDPDRF	PESQGPRNCLG
	CYP6AE17*		GFETS	ETLR	PEEYRPERF	PEGDGPRICIG
	CYP6AW1	WKAMR	GLETS	ETLR	PDKEDPYRE	AFGDOPRSCPG
	CYP6BD6	WRYLR	GFESS	EGIR	PDDYDPLRF	F GQCPRKCVG
	CYP6AB47	WRLLR	GFETS	EGMR	PDQ RPERF	PFGIGPRACIG
СҮРЗ	CYP6AB53	WKLLR	GFETS	ESMR	PEKFIPERF	PFGEGPRACIG
	CYP6AN4	WKLLR	GFETS	EAMR	PEEFLPERF	PEGEGPRVCVG
	CYP6CV1	WKILR	GFETS	ETLR	PNKENPDNE	PFGEGPRNCIG
	CYP6AB49*		GFETS	EGMR	PKEIRPERF	PFGEGPRACIG
	CYP6AB61*				PMKYDPERF	PFGEGPRACVG
	CYP6CT1*			TMR	PHKINPERF	FIGEGPRKCLG
	CYP6AE12	WKITR	GYETT	ETLR	PNVFKPERF	PFGEGPRICIG
	CYP6AB10	WRLVR	GFETS	LAMR	PMKYDPERF	FIGEGPRACVG
	CYP9A79	WKDMR	GFDTV	EVLR	PDKFDPERF	PEGIGPRNCIG
	CYP9A38	WKDMR	GFET1	EVLR	PSKEDPERF	FFGLGPRNCIG
	CYP9G18	WHDMR	GFETT	ETFR	PSMFNPERF	PFGSGPRACIG
	CYP9G19	WRDMR	GFETT	ETMR	PESFIPERF	FEGMGPENCIG
	CYP9A80	WKDMR	GFDTV	EVLR	PAKEDPERF	PEGLOPRNCIG
	CYP9A78	WKSMR	GVETV	ETLR	PYKEDPERF	PEGLOPRSCIG
	CYP9G3	WRDMR	GFDTS	ETFR	PEVINPORF	PEGMOPRTCIG
	CYP354A3	WKEVR	GYETS	ETLR	PEDFRPERF	AFGVGPRNCIG
	CYP321F5	WKLMR	GVEPT	ESLR	PEVIDPERF	PFGYGNRICIG
2	CYP338A1*		EKKKK	ESLR	AESEVPORE	PFGAGPRKCIG
CYP2	CYP304F17*		ASTAV	EMMR	PEAFRPERF	FFGAGRRLCAG
	CYP18A1	WKSQR	GMETI	ETLR	PKK NPSR	FGVGRRMCLG
	CYP15C1*		GVETV	ETLR	PENFNPERF	FIGNGKERCIG
	CYP307A2*		GHSSV	ECLR	PQK DPSR	PFSIGKRTCIG
	CYP305B1	WKEQR	GSQTT	EVQR	PHEFKPERF	FFGLGRRRCPG
	CYP333B28	WKQFR	GVDTT	ESLR	PKEYLPERW	VFGFGVRSCIG
Mito.	CYP301A1	WRTFR	GIDTI	EVFR	PEEFKPERW	PYGFGARICLG
	CYP301B1	WAAFR	GIDTT	EVLR	ATEFHPERW	FGFGKRMCLG
	CYP302A1	WWKLR	SIDTT	ESLR	PLTFKPDRW	PFGFGQRSCIA
	CYP314A1*		GRAAT	EAR		
	CYP49A1	SKAIW	GVEPL	EALR	SKAFIPLRW	PFGEACPA
	CYP339A1	WSRQR	GINTI	ENLR	PVREAPERW	GYGARRCLG
	CYP315A1*		AGDTT	ESMR.	ANN M F W	PFAIGTRSCIG

Fig. 6. Conserved domains of *H. vitessoides* cytochrome P450s (*HvCYP*s). Conserved residues are indicated in red. *Incomplete sequence.

Discussion

In recent years, many *CYP* genes have been identified in various insect species, especially in insects for which whole genomic sequencing has been performed. Bioinformatic analyses have revealed 84 *CYP* genes in *B. mori* (Ai et al. 2011), 90 genes in *D. melanogaster* (Tijet et al. 2001), 46 genes in *A. mellifera* (Claudianos et al. 2006), and 143 genes in *Tribolium castaneum* Herbst (Zhu et al. 2013). Within the order Lepidoptera, 63 *CYP* genes were identified in *Pieris rapae* L. (Liu et al. 2018), 85 in *Plutella xylostella* L. (Yu et al. 2015), and 77 in *Chilo suppressalis* Walker (Wang et al. 2014). As mentioned above, whole-genome information for *H.*

Fig. 7. Phylogenetic relationship of cytochrome P450s (*CYP*s) from *Drosophila melanogaster* (Dm), *Apis mellifera* (Am), *Bombyx mori* (Bm), and *Heortia vitessoides* (Hv). Phylogenetic tree was divided into four *CYP* clans, each represented by a branch color. Red, green, yellow, and blue branches represent clans of *CYP4*, *CYP3*, *CYP2*, and mitochondria, respectively. *Heortia vitessoides CYP*s (*HvCYP*s) are highlighted with a black circle.

vitessoides is currently unavailable; searching of transcriptome datasets can be used to identify new genes, including *CYP* genes. This approach has been used successfully for other insects lacking genomic data, such as *C. medinalis* (Liu et al. 2015) and *Liposcelis entomophila* Enderlein (Li et al. 2016). In the current study, we first generated the transcriptome dataset from four developmental stages of *H. vitessoides*. From the dataset, 46 *CYP* genes were identified. The number of *CYP* genes identified in *H. vitessoides* was clearly lower than in other lepidopteran species. There are two possible reasons for this result; firstly, previous studies investigated *CYP* expression in virtually all tissue types and throughout insect

Fig. 8. Relative expression levels of cytochrome P450 4 (*CYP4*) and *CYP6* family genes in the fourth-instar larvae exposed to half the lethal concentrations (LC₅₀) of chlorantraniliprole and beta-cypermethrin. Dashed line represents normalized level of gene expression in control larvae. **P* < 0.05, comparing treated and control insects in transcription levels (paired Student's *t*-test,). Data are means \pm SD of three biological replicates.

development (Wang et al. 2018). In contrast, we sequenced limited samples and may have missed *CYP* genes from other tissues or developmental stages. Secondly, the current sequencing technology might not be sufficiently powerful to screen all *CYP* genes, especially the transcripts expressed at very low levels (Liu et al. 2015).

Based on their evolutionary relationship, insect *CYPs* can be classified into four major clans: the *CYP2*, *CYP3*, *CYP4*, and mitochondrial. The genes of *CYP2* clan play basic physiological functions in insects. In *D. melanogaster*, for example, *CYP15A1* is involved in juvenile hormone metabolic pathways and *CYP307A1* is tightly correlated with the biosynthesis of 20-hydroxyecdysone (Iga and Kataoka 2012; Rewitz et al. 2007). The *CYP3* clan is a large group of insect *CYP*, and

members of the CYP3 clan are mainly related to xenobiotic metabolism and insecticide resistance; for instance, CYP321A1 and CYP6B8 have been found to metabolize plant allelochemicals in *Helicoverpa zea* Boddie (Rupasinghe et al. 2007). In Heliothis virescens F., CYP9A1 was inducible by thiodicarb, indicating a potential role in insecticide metabolism (Rose et al. 2006). CYP4 genes are involved in odorant and pheromone metabolism, fatty acid hydroxylation, and biosynthesis and metabolism of hormones, such as juvenile hormone and others associated with the gonadotropic cycle, as well as in insecticide resistance (Bergé et al. 1998, Wang et al. 2017). For example, CYP341A2 in P. xuthus acts as a degrading enzyme that plays a role in the chemosensory reception for host plant recognition (Ono et al. 2005). In Bemisia tabaci Gennadius, increased expression of CYP4C64 has been reported to be the main reason for imidacloprid resistance (Yang et al. 2013). Genes within the mitochondrial clan have highly specific functions in insects, such as the CYP302a1, CYP314a1, and CYP315a1 genes which are involved in biosynthesis, activation, and inactivation of 20-hydroxyecdysone in Aedes aegypti L. and D. melanogaster (Sztal et al. 2012). In this study, 46 HvCYPs, divided into four major clans and further assigned to 22 families and 34 subfamilies, might be connected with diverse functions. The functional diversity might lead to a better adaptation for *H. vitessoides* to ecological environments. However, further study is warranted to provide an in-depth confirmation of the above hypothesis.

An important mechanism that gives rise to insecticide tolerance is the metabolism of insecticides by the products of the over-expressed CYP genes and, in particular, CYP4 and CYP6 family genes (Li et al. 2007). For example, CYP4D4v2, CYP4G2, and CYP6A38, related to permethrin resistance, were upregulated by permethrin exposure in Musca domestica L. (Zhu et al. 2008). In Lymantria dispar L., the expression of 12 CYP6 family genes (CYP6AB32, CYP6AB33, CYP6AB34, CYP6AB35, CYP6AB36, CYP6AB37, CYP6AE51, CYP6AE52, CYP6AN15v1, CYP6AN16, CYP6B53, and CYP6CT4) was significantly upregulated by exposure to different insecticides (deltamethrin, omethoate, and carbaryl) (Sun et al. 2014). Similarly, products of CYP6B8 and CYP6B27 from H. zea can detoxify multiple insecticides including aldrin, diazinon, carbaryl, and α cypermethrin (Wen et al. 2009). Accordingly, determination of insecticide-inducible CYP4 and CYP6 family genes may lead to the identification of candidates that are involved in insecticide tolerance. In this study, three CYP6 family genes (CYP6AB53, CYP6AE17, and CYP6BD6) were significantly upregulated following exposure to LC₅₀ of chlorantraniliprole and beta-cypermethrin. Moreover, CYP4M39, CYP6AB49, CYP6AB61, CYP6AW1, and CYP6CV1 were significantly overexpressed under the stress of chlorantraniliprole whereas CYP6AB10 and CYP6AE12 were upregulated in the beta-cypermethrin-treated larvae compared with the control insects. These genes are, therefore, potential candidates involved in the detoxification of chlorantraniliprole and beta-cypermethrin, and further investigation of their functions using reverse genetic manipulation tools, such as the RNA interference (RNAi) approach, would contribute to enhancing our understanding of these genes.

In contrast, several *CYP4* and *CYP6* family genes were downregulated by insecticide exposure. For example, the expression of *CYP4D47* was downregulated by both malathion and beta-cypermethrin exposure in *Bactrocera dorsalis* Hendel

(Huang et al. 2013). In *Leptinotarsa decemlineata* Say, an exposure to cyhalothrin markedly reduced the expression levels of three *CYP* genes (*CYP6BU1*, *CYP9Z10*, and *CYP12J1*) (Wan et al. 2013). Our results demonstrated that the transcript levels of three *CYP6* family genes, *CYP6AB10*, *CYP6AB47*, and *CYP6CT1*, were significantly downregulated under stress of chlorantraniliprole. Moreover, beta-cypermethrin exposure also significantly reduced the mRNA level of *CYP4G24*. Transcriptional suppression of *CYP* genes was regarded as being related to multiple molecular mechanisms, and these processes often involve complex cascades of transcription factors and other regulatory proteins, which may create adaptive homeostasis in these organisms (Riddick et al. 2004). In addition, the expression levels of the remaining *CYP4* and *CYP6* family genes had no significant response to insecticide treatment, indicating that these genes might play a minor role in the metabolism of the tested insecticides or may not be sufficiently activated after 24-h exposure.

In summary, a *de novo* transcriptome was assembled for *H. vitessoides*, and 46 putative *CYP* genes were identified from this dataset for the first time in this study. These *CYP* genes were classified into four clans consisting of 22 families and 34 subfamilies. Furthermore, RT-qPCR results indicated that several *CYP4* and *CYP6* family genes were upregulated following exposure to LC_{50} of chlorantraniliprole and beta-cypermethrin and are potential candidates involved in the detoxification of these insecticides.

Acknowledgments

We are grateful to MingLing Yin for his assistance with the phylogenetic analyses and to David R. Nelson (the International Cytochrome Nomenclature Committee) for his help in *CYP* nomenclature. This work was supported by grants from the National Natural Science Foundation of China (No. 31470653) and the Natural Science Foundation of Guangdong Province, China (No. 2015A030313416).

References Cited

- Ai, J.W., Y. Zhu, J. Duan, Q.Y. Yu, G.J. Zhang, F. Wan and Z.H. Xiang. 2011. Genomewide analysis of cytochrome P450 monooxygenase genes in the silkworm, *Bombyx mori.* Gene 480: 42–50.
- Bergé, J.B., R. Feyereisen and M. Amichot. 1998. Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353: 1701–1705.
- Bosch, D., M.A. Rodriguez, L. Depalo and J. Avilla. 2018. Determination of the baseline susceptibility of European populations of *Cydia pomonella* (Lepidoptera: Tortricidae) to chlorantraniliprole and the role of cytochrome P450 monooxygenases. J. Econ. Entomol. 111: 844–852.
- Chen, X.E. and Y.L. Zhang. 2015. Identification and characterisation of multiple glutathione S-transferase genes from the diamondback moth, *Plutella xylostella*. Pest Manag. Sci. 71: 592–600.
- Chen, Z.Y., L.F. Zheng, L. Wang, D.W. Li, C.L. Cao and Y.Z. Li. 2011. Studies on the synergistic effects of chlorantraniliprole and beta-cypermethrin on *Heortia vitessoides* Moore. Shandong For. Sci. Technol. 6: 48–49.
- Cheng, J., J.X. Chen and T. Lin. 2017. *De novo* assembly and analysis of the *Heortia vitessoides* transcriptome via high-throughput Illumina sequencing. J. Asia–Pac. Entomol. 20: 1241–1248.

- Cheng, J., C.Y. Wang, Z.H. Lyu and T. Lin. 2018. Multiple glutathione s-transferase genes in *Heortia vitessoides* (Lepidoptera: Crambidae): Identification and expression patterns. J. Insect Sci. 18: 1–10.
- Claudianos, C., H. Ranson, R.M. Johnson, S. Biswas, M.A. Schuler, M.R. Berenbaum, R. Feyereisen and J.G. Oakeshott. 2006. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15: 615–636.
- **Conesa, A., S. Gotz, J.M. Garcia-Gomez, J. Terol, M. Talon and M. Robles. 2005.** Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.
- **Feyereisen, R. 2011.** Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim. Biophys. Acta 1814: 19–28.
- Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Hacohen, N. Rhind, F. Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29: 644–652.
- Hu, Z., Q. Lin, H. Chen, Z. Li, F. Yin and X. Feng. 2014. Identification of a novel cytochrome P450 gene, *CYP321E1* from the diamondback moth, *Plutella xylostella* (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Bull. Entomol. Res. 104: 716–723.
- Huang, Y., G.M. Shen, H.B. Jiang, X.Z. Jiang, W. Dou and J.J. Wang. 2013. Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, *Bactrocera dorsalis* (Hendel) (Diptera: Tephritidea). Pestic. Biochem. Physiol. 106: 1–7.
- Iga, M. and H. Kataoka. 2012. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol. Pharm. Bull. 35: 838–843.
- Jin, X.F., T. Ma, M.S. Chang, Y.J. Wu, Z.T. Liu, Z.H. Sun, T.J. Shan, X.Y. Chen, X.J. Wen and C. Wang. 2016. Aggregation and feeding preference of gregarious *Heortia vitessoides* (Lepidoptera: Crambidae) larvae to *Aquilaria sinensis* (Thymelaeaceae). J. Entomol. Sci. 51: 209–218.
- Lao, S.H., X.H. Huang, H.J. Huang, C.W. Liu, C.X. Zhang and Y.Y. Bao. 2015. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, *Nilaparvata lugens*. Genomics 106: 301–309.
- Li, T., Y. Liu, D.D. Wei, F. Shang, G. Smagghe, W. Dou, J.J. Wang and G. Smagghe. 2016. Characterization and profiles of five possible cytochrome P450 genes from *Liposcelis entomophila* (Enderlein) (Psocoptera: Liposcelididae). Arch. Insect Biochem. Physiol. 92: 259–273.
- Li, X.C., M.A. Schuler and M.R. Berenbaum. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52: 231–253.
- Liu, S., X.J. Rao, M.Y. Li, and S.G. Li. 2015. Identification and expression profiles of putative cytochrome P450 monooxygenase genes from *Cnaphalocrocis medinalis* (Lepidoptera: Pyralidae). Entomol. Res. 45: 141–149.
- Liu, S., Y.X. Zhang, W.L. Wang, Y. Cao, S. Li, B.X. Zhang and S.G. Li. 2018. Identification of putative cytochrome P450 monooxygenase genes from the small white butterfly, *Pieris rapae* (Lepidoptera: Pieridae), and their response to insecticides. Arch. Insect Biochem. Physiol. 98: e21455.
- Liu, Y.J., Y.C. Chi and H.D. Wuriyanghan. 2016. De nova assembly of the transcriptome for oriental armyworm *Mythimna separata* (Lepidoptera:Noctuidae) and analysis on insecticide resistance-related genes. J. Insect Sci. 16: 92; 1–8.
- Lu, J., Y. Liu, L.L. Li, M. Zhang, X.J. Wen and Y.Z. Li. 2014. An experiment on 7 kinds of insecticides against *Heortia vitessoides* Moore. Shandong For. Sci. Technol. 6: 37–39.
- Ono, H., K. Ozaki and H. Yoshikawa. 2005. Identification of cytochrome P450 and glutathione-S-transferase genes preferentially expressed in chemosensory organs of the swallowtail butterfly, *Papilio xuthus* L. Insect Biochem. Mol. Biol. 35: 837–846.

- **Pfaffl, M.W. 2001.** A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: 2002–2007.
- Qiao, H.L., P.F. Lu, J. Chen, W.S. Ma, R.M. Qin and X.M. Li. 2012. Antennal and behavioural responses of *Heortia vitessoides* females to host plant volatiles of *Aquilaria sinensis*. Entomol. Exp. Appl. 143: 269–279.
- Quevillon, E., V. Silventoinen, S. Pillai, N. Harte, N. Mulder and R. Apweiler. 2005. InterProScan: Protein domains identifier. Nucleic Acids Res. 33: W116–120.
- Rewitz, K.F., M.B. O'Connor and L.I. Gilbert. 2007. Molecular evolution of the insect Halloween family of cytochrome P450s: Phylogeny, gene organization and functional conservation. Insect Biochem. Mol. Biol. 37: 741–753.
- Riddick, D.S., C. Lee, A. Bhathena, Y.E. Timsit, P.Y. Cheng, E.T. Morgan, R.A. Prough, S.L. Ripp, K.K.M. Miller, A. Jahan and J.Y.L. Chiang. 2004. Transcriptional suppression of cytochrome P450 genes by endogenous and exogenous chemicals. Drug Metab. Dispos. 32: 367–375.
- Rose, R.L., D. Goh, D.M. Thompson, K.D. Verma, D.G. Heckel, L J. Gahan, R.M. Roe and E. Hodgson. 2006. Cytochrome P450 (CYP) 9A1 in *Heliothis virescens*: The first member of a new CYP family. Insect Biochem. Mol. Biol. 27: 605–615.
- Rupasinghe, S.G., Z. Wen, T.L. Chiu and M.A. Schuler. 2007. *Helicoverpa zea CYP6B8* and *CYP321A1*: Different molecular solutions to the problem of metabolizing plant toxins and insecticides. Protein Eng. Des. Sel. 20: 615–624.
- Su, Y.P. 1994. The biological characteristic of *Heortia vitessoides*. J. Chin. Med. Mater. 17: 7– 9.
- Sun, L.L., Z.Y. Wang, C.S. Zou and C.W. Cao. 2014. Transcription profiling of 12 Asian gypsy moth (*Lymantria dispar*) cytochrome p450 genes in response to insecticides. Arch. Insect Biochem. Physiol. 85: 181–194.
- Sztal, T., H. Chung, S. Berger, P.D. Currie, P. Batterham and P.J. Daborn. 2012. A cytochrome P450 conserved in insects is involved in cuticle formation. PLoS One. 5: e36544.
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
- Tijet. N., C. Helvig and R. Feyereisen. 2001. The cytochrome P450 gene superfamily in *Drosophila melanogaster*: Annotation, intron–exon organization and phylogeny. Gene. 262: 189–198.
- Wan, P.J., X.Q. Shi, Y. Kong, L.T. Zhou, W.C. Guo, T. Ahmat and G.Q. Li. 2013. Identification of cytochrome P450 monooxygenase genes and expression profiles in cyhalothrin-treated Colorado potato beetle, *Leptinotarsa decemlineata*. Pestic. Biochem. Physiol. 107: 360–368.
- Wang, B.J., M.F. Shahzad, Z. Zhang, H N. Sun, P. Han, F. Li and Z.J. Han. 2014. Genomewide analysis reveals the expansion of cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, *Chilo suppressalis*. Biochem. Biophys. Res. Commun. 443: 756–760.
- Wang, R.L., S.W. Liu, S.R. Baerson, Z. Qin, Z.H. Ma, Y.J. Su and J.E. Zhang. 2018. Identification and functional analysis of a novel cytochrome P450 gene *CYP9A105* associated with pyrethroid detoxification in *Spodoptera exigua* Hübner. Int. J. Mol. Sci. 19: 737.
- Wang, R.L., K. Zhu-Salzman, S.R. Baerson, X.W. Xin, J. Li, Y.J. Su and R.S. Zeng. 2017. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (*Spodoptera litura*) and RNA interference to evaluate its role in commonly used insecticides. Insect Sci. 24: 235–247.
- Wen, Y.Z., X.F. Jin, C.Q. Zhu, X. Chen, T. Ma, S.N. Zhang, Y. Zhang, S.C. Zeng, X.Y. Chen, Z.H. Sun, X.J. Wen and C. Wang. 2016. Effects of substrate type and moisture on pupation and emergence of *Heortia vitessoides* (Lepidoptera: Crambidae): Choice and nochoice studies. J. Insect Behav. 29: 473–489.

- Wen, Y.Z., W.Q. Qin, X. Chen, X.J. Wen, T. Ma, X. Dong, S.C. Lin, Z.H. Sun, S.C. Zeng and C. Wang. 2017. Soil moisture effects on pupation behavior, physiology, and morphology of *Heortia vitessoides* (Lepidoptera: Crambidae). J. Entomol. Sci. 52: 229–238.
- Wen, Z.M., R.S. Zeng, G.D. Niu, M.R. Berenbaum and M.A. Schuler. 2009. Ecological significance of induction of broad-substrate cytochrome P450s by natural and synthetic inducers in *Helicoverpa zea*. J. Chem. Ecol. 35: 183–189.
- Yang, X., W. Xie, S.L. Wang, Q J. Wu, H.P. Pan, R.M. Li, N.N. Yang, B.M. Liu, B.Y. Xu, X.M. Zhou and Y.J. Zhang. 2013. Two cytochrome P450 genes involved in imidacloprid resistance in field population of the whitefly, *Bemisia tabaci*, in China. Pestic. Biochem. Physiol. 107: 343–350.
- Yu, L.Y., W.Q. Tang, W.Y. He, X.L. Ma, L. Vasseur, S.W. Baxter, G. Yang, S.G. Huang, F.
 Q. Song and M.S. You. 2015. Characterization and expression of the cytochrome P450 gene family in diamondback moth, *Plutella xylostella* (L.). Sci. Rep. 5: 8952.
- Zhu, F., T.W. Moural, K. Shah and S.R. Palli. 2013. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, *Tribolium castaneum*. BMC Genomics 14: 174.
- Zhu, F., L. Li, L. Zhang and N. Liu. 2008. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin-resistant house flies, *Musca domestica*. BMC Physiol. 8: 18.
- Zhou, X.J., C.F. Sheng, M. Li, H. Wan and D. Liu. 2010. Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm *Helicoverpa armigera*. Pestic. Biochem. Physiol. 97: 209–213.