A Review of the Bioactivity of Plant Products Against *Aedes aegypti* (Diptera: Culicidae)¹

Fatehia Nasser Gharsan²

Biology Department, Faculty of Science, Albaha University, Saudi Arabia

J. Entomol. Sci. 54(3): 256-274 (July 2019)

Abstract The mosquito Aedes aegypti L. (Diptera: Culicidae) is a disease vector for several pathogens that affect human health worldwide. Therefore, there is a need to produce synthetic chemicals that can effectively control mosquitoes; however, these chemicals can also cause a range of environmental and health problems. In the present review, we compiled all available information from the literature between 2005 and 2018 on plant products that have been used to control A. aegypti and tabulated their modes of action. This review classifies these plant-based products according to their bioactivities (toxicity, repellency, feeding deterrence, and oviposition deterrence) and provides new insights, findings, and patterns of their application. Plants contain a wide spectrum of chemical compounds that can effectively control mosquito populations; therefore, they should be developed to control diseases transmitted by mosquitoes. Plant products are mostly safe for human, animal, and environmental health. Moreover, because of the diversity and low use of plant-derived compounds as insect control agents, mosquitoes have not acquired resistance to them. The present review indicated that the bioactivities of many plant compounds can effectively control A. aegypti in laboratory conditions, and the comprehensive cataloging and classification of natural plant product bioactivities in this review will facilitate the search for new applications of these substances in insect pest control strategies.

Key Words mosquito vectors, toxicity, repellents, antifeedants, oviposition deterrents

The mosquito *Aedes aegypti* (L.) transmits viruses that cause many diseases, such as yellow fever, chikungunya, dengue, and Zika viruses, that threaten human health (Githeko et al. 2000, Hennessey et al. 2016, Gregory et al. 2017). *Aedes aegypti* is 4–7 mm in length, has black coloration with white dots on its legs, and has white lines on its thorax (Carpenter and LaCasse 1955). After mating, the females bite humans, mammals, and birds to obtain the blood needed to meet its protein requirements for oviposition. Female *A. aegypti* can bite at any time of the day, but biting frequency tends to increase at sunset (Carpenter and LaCasse 1955). Female mosquitoes lay eggs five times in their lifespan; they produce approximately 100–200 eggs after a full blood meal. The lifespan of *A. aegypti* can range from 2 weeks to 1 mo, and its eggs are laid individually in stagnant water around houses, in containers, and in tree holes. When the eggs hatch, the larvae survive for approximately 4 d on water-based food sources, such as algae, and then fast for 2 d

¹Received 10 May 2018; accepted for publication 27 July 2018.

²Corresponding author (email: fatehia2002@gmail.com).

during pupation, after which the adult mosquitoes emerge (Zettel and Kaufman 2012).

Control of mosquito populations is one of the most effective ways to reduce the spread of viral diseases transmitted mainly by mosquitoes. Chemicals can control disease vector mosquitoes, but they are associated with several disadvantages. Therefore, researchers have focused on assessing the efficacy of plant-based pesticides and identifying their active ingredients to produce safe and effective pest control products. More than 2,000 plant species are known to produce chemicals with medicinal and insecticidal properties that could have a potential role in pest control programs (Ghosh et al. 2012). Previous reviews focused mainly on the bioactivity of plant extracts and essential oils in laboratory formulations, and few of these are actually used for mosquito control in practice. The present review aimed to compile information published between 2005 and 2018 on plant products that could be used to control *A. aegypti*. The bioactivities of these compounds are classified as toxic, repellent, antifeeding, or oviposition deterrent activities in mosquitos.

Mosquito Control Using Plant Products

Plants contain chemicals that are effective against certain target insects, which could be used to control mosquitoes and reduce their spread. Plant products are generally considered less harmful for humans and the environment than synthetic chemicals (Bokhari et al. 2014, Gbolade et al. 2000, Shivakumar et al. 2013, Nasir et al. 2015); therefore, plant products are regarded as ideal substitutes for conventional chemical pesticides (Ngadino and Sudjarwo 2017). Plant products are also abundant sources of effective and biodegradable biological compounds, and insect resistance to these products is limited; however, in the development of alternative pest control substances, the risk of insect tolerance merits serious consideration and further investigation.

Numerous studies have shown that plants and their products can be used to control all life stages of mosquitoes (Table 1) and may exhibit repellent, toxic, antifeeding, or antioviposition effects. Most of the plant products tabulated in Table 1 are indicated as toxic and have various types of bioactivity. The present review catalogs these products and classifies their bioactivities based on their effective-ness.

Toxic Effect of Plant Products on Mosquitoes

Pest control involves the use of materials to kill or reduce the number of the target insects. Such materials are classified according to their modes of action (e.g. acetylcholinesterase inhibitors or antagonists, sodium channel blockers, and nicotinic acetylcholine receptor agonists) and their methods of administration to insects (e.g. contact, ingestion, and fumigation). Toxicity can be quantified by calculating the concentration-mortality or dose-mortality responses to the compound.

Plants contain chemical compounds, such as flavonoids, tannins, saponins, alkaloids, and volatile oils, that are known for their toxic effects against various types of insects (Ngadino and Sudjarwo 2017). Moreover, plant products have

various modes of action against target insects. The most prominent of these modes is acetylcholinesterase inhibition or octopamine antireception, both of which impair insect nervous system function, resembling the effects of certain chemical pesticides. Studies have shown that volatile and monoturbo oils can cause insect death by inhibiting acetylcholinesterase (Sendi and Ebadollahi 2013). In addition, many plant oils can harm insect nervous systems by affecting ketamine receptors (Sendi and Ebadollahi 2013). Certain plant-derived compounds mimic acetylcholine in mammalian neuromuscular centers and cause spasms and twitches to occur in rapid succession, which lead to the death of target insects (Ware 2000). Furthermore, certain plant products affect sensory nerves of the superficial nervous system in insects. However, there are also plant products that do not affect the insect nervous system. For example, limonene extracted from citrus peel does not affect cholinesterase (Ware 2000). Previous studies have shown that certain plant compounds, such as azadirachtin extracted from the seeds of Azadirachta indica A. Juss, exhibit pesticidal activities (Ware 2000) by mimicking growth regulators, influencing maturation and senescence, and causing death. Moreover, seed and leaf extracts of Argemone mexicana L. differ in efficacy against mosquitoes (Sakthivadivel and Daniel 2008). Modes of action can, thus, vary even between extracts from the same plant.

Plant Products Used as Mosquito Repellents

Natural or chemically produced repellents are nontoxic, but their appearance, flavor, and odor can change insect behavior. Mosquitoes are naturally attracted to human body temperature, respiration, and carbon dioxide exhalation (Tauxe et al. 2013); however, repellents can prevent mosquitoes from landing on exposed skin. The effectiveness of repellent products is rated in several ways and a common method involves the use of an olfactometer and volunteers. Mosquito bites with and without repellent application are counted and repellent effectiveness is calculated using the Weaving and Sylvester formula (Weaving and Sylvester 1967): repellency (%) = 100 - number of bites on control arm/number of bites on treated arm × 100. In most studies, plant product repellency is calculated using the formula from Sharma and Ansari (1994) and Yap et al. (1998): repellency (%) = $C - T/C \times 100$ where C = number of bites in the control and T = number of bites in the treated group.

Currently available repellents include allethrin, *N*,*N*-diethyl-*m*-toluamide, dimethyl phthalate, and *N*,*N*-diethyl mandelic acid amide, which repel mosquitoes effectively but are reported as unsafe for common use (Roland et al. 1985, Zadikoff 1979). Therefore, researchers are attempting to find alternative repellents from natural plant sources with efficacy comparable to those of conventional products but without any harmful effects to users. The ideal products should be nontoxic, environmentally friendly, unlikely to damage sensitive skin, and safe for children from the age of three months (Patel et al. 2012). However, these products may be costly and may require frequent or repeated application because they evaporate quickly. Moreover, certain products may cause allergic reactions when applied directly to the skin (Patel et al. 2012). The efficacy of repellents can be improved by changing their chemical structures to increase their stability and their ability to remain in contact with the skin for longer periods of time (Maji et al. 2007).

	Bio	Bioactivity Type			Descriptors as	
Reference	Antifeedant	Toxicant	Repellent	Affected Stage	Reported in the References	Plant Species
Ansari et al. 2005	NA	*	NA	Larvae	Industrially extracted and commercially supplied oils	Pinus longifolia
Trongtokit et al. 2005	AN	NA	*	Adult	Undiluted oils	Cymbopogon nardus Pogostemon cablin Syzygium aromaticum Zanthoxylum limonella
Kamaraj et al. 2008	NA	*	AN	Lawae	Extract (leaves)	Ocimum canum Ocimum sanctum Rhinacanthus nasutus
Kumar et al. 2011	ΝA	*	+	Adult and larvae	Essential oils (leaves)	Mentha piperita
Phasomkusolsil and Soonwera 2011	AN	AA	*	Adults	Essential oils	Cymbopogon citrates Cymbopogon nardus Syzygium aromaticum Ocimum basilicum
Sritabutra et al. 2011	*	NA	*	Adults	Essential oils	Cybopogon citrates Eucalyptus globulus Ocimum basilicum
Manimaran et al. 2012	NA	*	NA	Lawae	Oils (leaves)	Mentha piperita

Table 1. Bioactivity of plant products against Aedes aegypti, arranged by publication year.

259

	Bic	Bioactivity Type			Descriptors as	
Reference	Antifeedant	Toxicant	Repellent	Affected Stage	Reported in the References	Plant Species
Shivakumar et al. 2013	Ϋ́Υ	*	NA	Larvae	Extract (leaves)	Blepharis maderaspatensis Elaeagnus indica Maaesa indica Phyllanthus wightianus Memecylon edule
Tennyson et al. 2013	NA	*	NA	Lawae	Oils	Citrus sinensis Cymbopogon martini Myristica fragrans
Fernandez et al. 2014	NA	*	NA	Lawae	Essential oils	Tetradenia riparia
Kiplang'at and Mwangi 2014	NA	NA	*	Adult	Extract (leaves)	Chrysanthemum cinerariaefolium Azadirachta indica
Meenakshi and Jayaprakash 2014	NA	*	NA	Lawae	Extract (leaves)	Rhizophora mucronata
Pierre et al. 2014	NA	*	NA	Lawae	Extract (leaves)	Callistemon rigidus
Queen et al. 2014	AN	AN	*	Adult	Dried powdered leaves	Pongamia glabra Calotropis gigantea Vinca rosea Chrysanthemum indicum Adhatoda vasica

260

Table 1. Continued.

	Bio	Bioactivity Type	0		Descriptors as	
Reference	Antifeedant	Toxicant	Repellent	Affected Stage	Reported in the References	Plant Species
Rocha et al. 2015	NA	*	NA	Larvae	Essential oils	Foeniculum vulgare
Aguiar et al. 2015	NA	*	*	Egg, larvae, pupae, and adult	Essential oils	Siparuna guianensis
Ananth and Mani 2015	ΝA	*	*	Adult and Iarvae	Extract (leaves)	Acalypha omata
Pérez López et al. 2015	NA	*	AN	Larvae	Essential oils	Zanthoxylum fagara Ruta chalepensis Thymus vulgaris
Nasir et al. 2015	NA	*	NA	Larvae and pupae	Essential oils (leaves-branches) Rhizome of ginger	Eucalyptus globules Mentha piperita Zingiber officinale Rosc.
Sathantriphop et al. 2015	NA	*	*	Adult	Essential oils	Cymbopogon nardus Ocimum americanum Nepeta cataria Vetiveria zizanioides
Soonwera 2015a	*	*	Ч И	Adult	Essential oils	Citrus aurantium Citrus aurantifolia Citrus hystix Citrus maxima Citrus medica Citrus reticulate

Table 1. Continued.

261

	Bic	Bioactivity Type			Bioactivity Type Descriptors as	
Reference	Antifeedant	Toxicant	Repellent	Affected Stage	Reported in the References	Plant Species
Ali et al. 2015	*	*	*	Adult and larvae	Essential oils (flower-leaf-stem)	Echinophora Iamondiana
Da Silva, Milet-Pinheiro, et al. 2015	AN	*	NA	Lawae	Essential oils (leaves)	Eugenia brejoensis
Arivoli et al. 2016	ΝA	*	NA	Lawae	Ethyl acetate whole- plant extract	Sphaeranthus indicus
Auysawasdi et al. 2016	NA	NA	*	Adult	Essential oils	Curcuma longa Eucalyptus globulus Citrus aurantium
Cantrell et al. 2016	NA	NA	*	Adult	Essential oils	Hierochloë odorata
Da Silva Carvalho et al. 2016	ΝA	*	NA	Adult and larvae	Essential oils (leaves)	Croton tetradenius
Da Silva et al. 2016	ΝA	*	NA	Adult	Essential oils (leaves)	Piper corcovadensis
Govindarajan et al. 2016	ΝA	*	*	Lawae	Essential oils	Zingiber nimmonii
Misni et al. 2016	NA	NA	*	Adult	Essential oil (leaves, fruit peel, rhizome)	Citrus aurantifolia Citrus grandis Alpinia galanga
Oliveira et al. 2016	NA	*	NA	Lawae	Oils (fruits)	Pterodon emarginatus

Table 1. Continued.

ö
ð
ž
1
⊒.
Ξ.
<u> </u>
5
X
C
-
<u> </u>
-
Ð
2
ß
1.1

	Bi	Bioactivity Type			Descriptors as	
Reference	Antifeedant	Toxicant	Repellent	Affected Stage	Reported in the References	Plant Species
Intirach et al. 2016	NA	*	NA	Adult and larvae	Essential oils and ethanolic extracts	Petroselinum crispum
Santana et al. 2016	AN	*	AN	Larvae	Essential oils	11 species of <i>Piper</i> from Panama
Uniyal et al. 2016	NA	NA	*	Adult	Essential oils (fruit)	Litsea cubeba
Alvarez Costa et al. 2017	NA	*	*	Larvae	Essential oils	Eucalyptus nitens
Amir et al. 2017	NA	*	NA	Larvae	Extract (leaves)	Parthenium hysterophorus
Benelli et al. 2017	NA	*	NA	Larvae	Essential oils	Blumea eriantha
Botas et al. 2017	NA	*	NA	Larvae	Essential oils	Baccharis reticularia
Castillo et al. 2017	۲ ۷	*	*	Adult and pupae	Essential oils	Lippia alba Lippia origanoides Eucalyptus citriodora Cymbopogon citratus Cymbopogon flexuosus Citrus sinensis Cananga odorata Swinglea glutinosa Tagetes lucida

	Bio	Bioactivity Type			Descriptors as	
Reference	Antifeedant	Toxicant	Repellent	Affected Stage	Reported in the References	Plant Species
Cruz et al. 2017	NA	*	NA	Adult and larvae	Essential oils	Croton argyrophyllus
Nentwig et al. 2017	NA	NA	*	Adult	(Seeds oil)	Syzygium aromaticum
Ngadino and Sudjarwo 2017	NA	*	NA	Larvae	Extract	Pinus merkusii
Porto et al. 2017	NA	*	NA	Larvae	Extract (leaves)	Ormosea arborea Turnera ulmifolia Piper hispidum Spermacoce latifolia
Ríos et al. 2017	A	*	Ϋ́	Larvae	Essential oils	Thymus vulgaris Salvia officinalis Lippia origanoides Eucalyptus globulus Cymbopogon nardus C. martinii L. alba Pelargonium graveolens Tumera diffusa Swinglea glutinosa
Thanigaivel et al. 2017	NA	*	*	Adult	Essential oils	Justicia adhatoda L.

264

Table 1. Continued.

Downloaded from https://prime-pdf-watermark.prime-prod.pubfactory.com/ at 2025-06-01 via free access

_
σ
Ð
Ĕ.
~
.=
H
_
0
Ō
\mathbf{U}
_
Φ
-
-9
B
<u> </u>

	Bio	Bioactivity Type	A		Descriptors as	
Reference	Antifeedant Toxicant Repellent	Toxicant	Repellent	Affected Stage	Reported in the References	Plant Species
Vivekanandhan et al. 2017	AN	*	AN	Adult, larvae, and pupae	Extract (crude leaves)	Acanthospermum hispidum
Zhai et al. 2017	AN	NA	*	Adult	Essential oils	Eleutherococcus senticosus
Govindarajan et al. 2018	NA	¥	NA	Lawae	Essential oils	Galinsoga parvitlora
*, bioactivity found; NA, bioactivity not tested.	tivity not tested.					

The efficacy of plant products as mosquito repellent depends on several factors, such as the type of repellent material, application method, environmental factors, exposure duration, and insect pest sensitivity (Maia and Moore 2011). Plant-based repellents can be included in aerosols, wet wipes, creams, or moisturizers. The quantity of repellent used will vary with the type of materials it is suspended in. Plant volatile oils could replace synthetic insect repellents because the former consist of monoterpenes, such as cincole, eugenol, terpinolene, camphor, citronella, limonene, citronellol, thymol, and α -pinene; all of which exhibit insect repellents effects (Yang et al. 2004). These plant oils can be used as topical insect repellents and as oviposition deterrents (Gershenzon and Dudareva 2007).

Plant Products as Antifeedants

Antifeedants are substances with high vapor concentrations that alter behavior and inhibit feeding in insects. Many plants contain natural antifeedants to protect themselves against insect herbivory. There are several differences between repellents and antifeedants. A substance that provides a long duration of protection and lowers biting rate is considered both a highly efficient repellent and an antifeedant. However, a compound that confers protection for only a short time but lowers biting rate is considered more effective as an antifeedant than a repellent. In contrast, a product that provides long protection but does not lower biting rate is probably more effective as a repellent than an antifeedant (Phasomkusolsil and Soonwera 2011). Ali et al. (2015) demonstrated that essential oils in *Echinophora lamondiana* Yildiz & Z. Bahcecioglu had biting deterrent activity due to high levels of pure terpinolene.

Certain plant-based antifeedants prevent muscle contraction and feeding in insects (Ware 2000). Other antifeedants affect the taste organs (peripheral sensilla) of insects to deter them from feeding. Antifeedants can be sprayed in the field in the same way as pesticides.

Plant Products as Oviposition Deterrents

During oviposition, female mosquitoes rest on water surfaces at sites suitable for the growth of hatching larvae. Their antennas contain chemoreceptors that guide them towards appropriate oviposition sites (McBride et al. 2014). The eggs are laid individually on water surfaces either in natural or human-made environments, such as standing water in tires and vases (Wong et al. 2011). Mosquito populations can be controlled by preventing oviposition by using plants and various plant compounds. Therefore, these plant products could be used to control the spread of viruses transmitted by these mosquitoes (Da Silva Alves et al. 2015). Oviposition deterrence is quantified by the oviposition active index (OAI). OAI is calculated using the formula described by Kramer and Mulla (1979) and Xue et al. (2001): ER (%) = $NC - NT/NC \times 100$ where ER = effective repellency, NC = control number of eggs, and NT = total number of eggs. Substances with OAI of <0.3 are considered repellents, whereas those with OAI of >0.3 are regarded as attractants. Plants and their products that function as oviposition deterrents are listed in Table 2, with citations arranged by publication year.

Reference	Most Influential	Descriptors	Plant Species
Swathi et al. 2010	<i>D. stramonium</i> (ER = 100%)	Ethanolic extract of leaves	Pongamia pinnata Coleus forskohlii Datura stramonium
Siriporn and Mayura 2012	<i>C. odorata</i> (OAI = -1 at 10% concentration)	Essential oils	Cananga odorata Cymbopogon citratus C. nardus Eucalyptus citriodora Ocimum basilicum Syzygium aromaticum
Prathibha et al. 2014	E. jambolana (OAI = −0.93)	Extract (leaves/ flowers)	Eugenia jambolana Solidago canadensis Euodia ridleyi Spilanthes mauritiana
Ananth and Mani 2015	99.4% at 0.01 ppm	Extract (leaves)	Acalypha ornata
Reegan et al. 2015	Hexane extract of <i>L. acidissima</i> (ER = 100%)	Extract	Aegle marmelos Limonia acidissima Sphaeranthus indicus Sphaeranthus amaranthoides Chromolaena odorata
Da Silva, Milet- Pinheiro et al. 2015b	Oviposition rate dropped to 59– 63% at 25, 50, and 100 ppm	Essential oils (leaves)	Commiphora leptophloeos
Soonwera 2015b	99.4% at 10% concentration	Flower oil	Cananga odorata
Yu et al. 2015	$\begin{array}{l} \text{Methanol extract} \\ (\text{OAI} = -1 \text{ at } 400 \\ \mu\text{g/mL}) \end{array}$	Extracts (seaweed)	Bryopsis pennata
Benelli et al. 2016	OAI = -0.84 at 55.11 μg/ml	Essential oils	Syzygium lanceolatum
Bezerra-Silva et al. 2016	<i>n</i> -dodecanol (23.9% of total laid). 50 ppm	Analysis of oils	Essential oils of three cultivars of <i>Etlingera elatior</i>

Table 2	. Plant	species	with	oviposition	deterrent	effects	in	the	Zika	virus
	vecto	r Aedes	aegyp	oti, arranged	by publica	ation ye	ar.			

Reference	Most Influential	Descriptors	Plant Species
AlShebly et al. 2017	ar-curcumene (OAI = -0.81 at 50 μ g/ml)	Essential oils	Hedychium larsenii
Castillo et al. 2017	<i>E. citriodora</i> (OAI = -1.0 at 200 ppm)	Essential oils	Lippia alba L. origanoides Eucalyptus citriodora Cymbopogon citratus Cymbopogon flexuosus Citrus sinensis Cananga odorata Swinglea glutinosa Tagetes lucida
Govindarajan et al. 2018	(Z)- γ -bisabolene (OAI = \leq -0.79 at 25 μ g/ml)	Essential oils	Galinsoga parviflora

Table 2. Continued.

OAI, oviposition active index; ER, percentage of effective repellency.

Conclusions

More than 2,000 plant species that belong to the Meliaceae, Rutaceae, Asteraceae, Cladophoraceae, Labiatae, and Apocynaceae families produce insecticidal chemicals (Ghosh et al. 2012, Shaalan et al. 2005). The effectiveness of products derived from the same plant may vary with the organ from which the products were extracted (Wannang et al. 2015). The type of solvent used for extraction can also determine the effectiveness of the plant product at eliminating mosquitoes. Examples of common solvents used in plant compound extraction are n-hexane, acetone, chloroform, ethyl acetate, and methanol. The median lethal concentrations (LC₅₀) of the extracts may vary with the type of solvent used possibly because of the differences in solvent composition and extraction ratio/ efficiency (Ghosh et al. 2012, Shivakumar et al. 2013). Several studies have shown that extraction method influences the relative mosquito-controlling effectiveness of the plant extract. Plant extracts may be prepared by distillation using commercial oils or solvents (Kiplang'at and Mwangi 2014, Nasir et al. 2015, Soonwera 2015a, Sritabutra et al. 2011). Plant age (young, mature, old) can also affect the quality of the products extracted from collected samples (Fernandez et al. 2014).

A very important point we have tried to stress in this review is the lack of standardization of plant parts, extraction protocols, and other parameters used in the currently available studies. This limitation prevents us to reasonably compare the results of multiple studies. Methodological standardization could allow us to make these comparisons and accelerate the identification and development of plant-based mosquito-control agents. The present review categorized the bioactivity of mosquito-control compounds, which can guide the standardization of natural plant product classification.

Plants are rich sources of compounds that could improve disease vector control. Research efforts should focus on the development of plant products that can effectively control disease-bearing mosquitoes and be commercially applied as soon as testing confirms their long-term human, animal, and environmental safety. It is preferable to develop products that can be used at all stages of mosquito development (egg, larva, pupa, and adult) and that disrupt the insect life cycle. The plants selected for use as pest control product sources should be easily cultivated, accessible, cost-effective, and sustainable.

Acknowledgments

We thank Fatima Alzahrani for her assistance in the preparation of this manuscript.

References Cited

- Aguiar, R.W.S., S.F. dos Santos, F. da Silva Morgado, S.D. Ascencio, M. de Mendonça Lopes, K.F. Viana, J. Didonet and B.M. Ribeiro. 2015. Insecticidal and repellent activity of *Siparuna guianensis* Aubl. (Negramina) against *Aedes aegypti* and *Culex quinquefasciatus*. PLoS One. 10: e0116765.
- Ali, A., N. Tabanca, G. Ozek, T. Ozek, Z. Aytac, U.R. Bernier, N.M. Agramonte, K.H.C. Baser and I.A. Khan. 2015. Essential oils of *Echinophora lamondiana* (Apiales: Umbelliferae): A relationship between chemical profile and biting deterrence and larvicidal activity against mosquitoes (Diptera: Culicidae). J. Med. Entomol. 52: 93–100.
- AlShebly, M.M., F.S. AlQahtani, M. Govindarajan, K. Gopinath, P. Vijayan and G. Benelli. 2017. Toxicity of ar-curcumene and epi-β-bisabolol from *Hedychium larsenii* (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 137: 149–157.
- Alvarez Costa, A., C.V. Naspi, A. Lucia and H.M. Masuh. 2017. Repellent and larvicidal activity of the essential oil from *Eucalyptus nitens* against *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae). J. Med. Entomol. 54: 670–676.
- Amir, H., B.Z. Butt and S.E. Vehra. 2017. Evaluation of larvicidal activity of *Parthenium hysterophorus* against *Aedes aegypti*. Int. J. Mosq. Res. 4: 01–04.
- Ananth, S. and P. Mani. 2015. Mosquito larvicidal, oviposition deterrent and repellent properties of *Acalypha ornata* Hochst. ex A. Rich. Extracts against *Aedes aegypti*, *Anopheles stephensi* and *Culex quinquefasciatus*. J. Pharm. Sci. Technol. 5: 82–87.
- Ansari, M.A., P.K. Mittal, R.K. Razdan and U. Sreehari. 2005. Larvicidal and mosquito repellent activities of pine (*Pinus longifolia*, Family: Pinaceae) oil. J. Vector Borne Dis. 42: 95.
- Arivoli, S., T. Samuel, R. Raveen, M. Jayakumar, B. Senthilkumar and M. Govindarajan. 2016. Larvicidal activity of fractions of *Sphaeranthus indicus* Linnaeus (Asteraceae) ethyl acetate whole plant extract against *Aedes aegypti* Linnaeus 1762, *Anopheles stephensi* Liston 1901 and *Culex quinquefasciatus* Say 1823 (Diptera: Culicidae). Int. J. Mosq. Res. 3: 18–30.
- Auysawasdi, N., S. Chuntranuluck, S. Phasomkusolsil and V. Keeratinijakal. 2016. Improving the effectiveness of three essential oils against *Aedes aegypti* (Linn.) and *Anopheles dirus* (Peyton and Harrison). Parasitol. Res. 115: 99–106.
- Benelli, G., M. Govindarajan, M. Rajeswary, S. Senthilmurugan, P. Vijayan, N.S. Alharbi,
 S. Kadaikunnan and J.M. Khaled. 2017. Larvicidal activity of *Blumea eriantha* essential oil and its components against six mosquito species, including Zika virus vectors: The

promising potential of (4E, 6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol. Res. 116: 1175–1188.

- Benelli, G., M. Rajeswary, and M. Govindarajan. 2016. Towards green oviposition deterrents? Effectiveness of *Syzygium lanceolatum* (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ. Sci. Pollut. Res. 1–10.
- Bezerra-Silva, P.C., K.A. Dutra, G.K. Santos, R.C. Silva, J. lulek, P. Milet-Pinheiro and D.M. Navarro. 2016. Evaluation of the activity of the essential oil from an ornamental flower against *Aedes aegypti*: Electrophysiology, molecular dynamics and behavioral assays. PLoS One. 11: e0150008.
- Bokhari, N.A., I. Siddiqui, K. Perveen, I. Siddique, M.S. Alwahibi, D.W. Soliman and M. Al-Subeie. 2014. Potential of different parts of neem (*Azadirachta indica*) extracts in controlling *Rhizoctonia solani* infestation. Int. J. Agric. Biol. 16: 639–643.
- Botas, G.D.S., R.A. Cruz, F.B. de Almeida, J.L. Duarte, R.S. Araújo, R.N.P. Souto, R. Ferreira, J.C.T. Carvalho, M.G. Santos, L. Rocha and V.L.P. Pereira. 2017. Baccharis reticularia DC. and limonene nanoemulsions: Promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules 22: 1990.
- **Cantrell, C.L., A.M.P. Jones and A. Ali. 2016.** Isolation and identification of mosquito (*Aedes aegypti*) biting-deterrent compounds from the native American ethnobotanical remedy plant *Hierochloë odorata* (sweetgrass). J. Agric. Food Chem. Biol. 64: 8352–8358.
- Carpenter, S.J. and W.J. LaCasse. 1955. Mosquitoes of North America (North of Mexico). Univ. California Press. Berkeley, CA. 360 pp.
- Castillo, R.M., E. Stashenko and J.E. Duque. 2017. Insecticidal and repellent activity of several plant-derived essential oils against *Aedes aegypti*. J. Am. Mosq. Control Assoc. 33: 25–35.
- Cruz, R.C.D., S.L.C.E. Silva, I.A. Souza, S.A. Gualberto, K.S. Carvalho, F.R. Santos and M.G. Carvalho. 2017. Toxicological evaluation of essential oil from the leaves of *Croton* argyrophyllus (Euphorbiaceae) on *Aedes aegypti* (Diptera: Culicidae) and *Mus musculus* (Rodentia: Muridae). J. Med. Entomol. 54: 985–993.
- Da Silva, A.G., R.C.C. Alves, C.M.B. Filho, P.C. Bezerra-Silva, L.M.M.D. Santos, M.A. Foglio, D.M.D.A.F. Navarro, M.V.D. Silva and M. T. D. S. Correia. 2015a. Chemical composition and larvicidal activity of the essential oil from leaves of *Eugenia brejoensis* Mazine (Myrtaceae). J. Essent. Oil Bear. Pl. 18: 1441–1447.
- Da Silva, R.C.S., P. Milet-Pinheiro, P.C.B. da Silva, A.G. da Silva, M.V. da Silva, D.M.D.A.F. Navarro and N.H. da Silva. 2015b. (E)-Caryophyllene and α-Humulene: *Aedes aegypti* oviposition deterrents elucidated by gas chromatography-electrophysiological assay of *Commiphora leptophloeos* leaf oil. PLoS One. 10: e0144586.
- Da Silva, M.F.R., P.C. Bezerra-Silva, C.S. de Lira, B.N. de Lima Albuquerque, A.C.A. Neto, E.V. Pontual, J.R. Maciel, P.M.G. Paiva and D.M.D.A.F. Navarro. 2016. Composition and biological activities of the essential oil of *Piper corcovadensis* (Miq.) C. DC (Piperaceae). Exp. Parasitol. 165: 64–70.
- Da Silva Carvalho, K., S.L.D.C. e Silva, I.A. de Souza, S.A. Gualberto, R.C.D. da Cruz, F.R. dos Santos and M.G. de Carvalho. 2016. Toxicological evaluation of essential oil from the leaves of *Croton tetradenius* (Euphorbiaceae) on *Aedes aegypti* and *Mus musculus*. Parasitol. Res. 115: 3441–3448.
- Fernandez, C.M.M., E.L. Barba, A.C.M. Fernandez, B.K. Cardoso, I.B. Borges, O.S. Takemura, L.D.A. Martins, L.E.R. Cortez, D.A.G. Cortez and Z.C. Gazim. 2014. Larvicidal activity of essential oil from *Tetradenia riparia* to control of *Aedes aegypti* larvae in function of season variation. J. Essent. Oil Bear. Pl. 17: 813–823.
- Gbolade, A.A., A.O. Oyedele, M.B. Sosan, F.B. Adewoyin and O.L. Soyelu. 2000. Mosquito repellent activities of essential oils from two Nigerian *Ocimum* species. J. Trop. Med. Pl. 1: 146–148.
- Gershenzon, J. and N. Dudareva. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3: 408

- Ghosh, A., N. Chowdhury and G. Chandra. 2012. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 135: 581.
- Githeko, A.K., S.W.Lindsay, U.E. Confalonieri and J.A. Patz. 2000. Climate change and vector-borne diseases: a regional analysis. Bull. World Health Org. 78: 1136–1147.
- **Govindarajan, M., B. Vaseeharan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, M.N. Alanbr, S.A. Alyahya, F. Maggi and G. Benelli. 2018.** High efficacy of (Z)-γ-bisabolene from the essential oil of *Galinsoga parviflora* (Asteraceae) as larvicide and oviposition deterrent against six mosquito vectors. Environ. Sci. Pollut. Res. 1–12
- Govindarajan, M., M. Rajeswary, S. Arivoli, S. Tennyson and G. Benelli. 2016. Larvicidal and repellent potential of *Zingiber nimmonii* (J. Graham) Dalzell (Zingiberaceae) essential oil: An eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol. Res. 115: 1807–1816.
- Gregory, C.J., T. Oduyebo, A.C. Brault, J.T. Brooks, K.W. Chung, S. Hills, M.J. Kuehnert, P. Mead, D. Meaney-Delman, I. Rabe and E. Staples. 2017. Modes of transmission of Zika virus. J. Infec. Dis. 216: S875–S883.
- Hennessey, M., M. Fischer and J.E. Staples. 2016. Zika virus spreads to new areas-region of the Americas, May 2015–January 2016. Am. J. Transplant. 16: 1031–1034.
- Intirach, J., A. Junkum, N. Lumjuan, U. Chaithong, A. Jitpakdi, D. Riyong, A. Wannasan, D. Champakaew, R. Muangmoon, A. Chansang and B. Pitasawat. 2016. Antimosquito property of *Petroselinum crispum* (Umbellifereae) against the pyrethroid resistant and susceptible strains of *Aedes aegypti* (Diptera: Culicidae). Environ. Sci. Pollut. Res. 23: 23994–24008.
- Kamaraj, C., A.A. Rahuman and A. Bagavan. 2008. Antifeedant and larvicidal effects of plant extracts against *Spodoptera litura* (F.), *Aedes aegypti* L. and *Culex quinquefasciatus* Say. Parasitol. Res. 103: 325–331.
- Kiplang'at, K.P. and R.W. Mwangi. 2014. Synergistic repellent activity of plant essential oils against Aedes aegypti on rabbit skin. Int. J. Mosq. Res. 1: 55–59.
- **Kramer, W.L. and M.S. Mulla. 1979.** Oviposition attractants and repellents of mosquitoes: Oviposition responses of *Culex* mosquitoes to organic infusions. Environ. Entomol. 8: 1111–1117.
- Kumar, S., N. Wahab and R. Warikoo. 2011. Bioefficacy of *Mentha piperita* essential oil against dengue fever mosquito *Aedes aegypti* L. Asian Pac. J. Trop. Biomed. 1: 85–88.
- Maia, M.F. and S.J. Moore. 2011. Plant-based insect repellents: a review of their efficacy, development and testing. Malaria J. 10: S11.
- Maji, T.K., I. Baruah, S. Dube and M.R. Hussain. 2007. Microencapsulation of *Zanthoxylum* limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresour. Technol. 98: 840–844.
- Manimaran, A., M.M.J.J. Cruz, C. Muthu, S. Vincent and S. Ignacimuthu. 2012. Larvicidal and knockdown effects of some essential oils against *Culex quinquefasciatus* Say, *Aedes aegypti* (L.) and *Anopheles stephensi* (Liston). Adv. Biosci. Biotechnol. 3: 855–862.
- McBride, C.S., F. Baier, A.B. Omondi, S.A. Spitzer, J. Lutomiah, R. Sang, R. Ignell and L.B. Vosshall. 2014. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515: 222.
- Meenakshi, S.V. and K. Jayaprakash. 2014. Mosquito larvicidal efficacy of leaf extract from mangrove plant *Rhizophora mucronata* (Family: Rhizophoraceae) against *Anopheles* and *Aedes* species. J. Pharmacogn. Phytochem. 3: 78–83.
- Misni, N., Z.M. Nor and R. Ahmad. 2016. New candidates for plant-based repellents against *Aedes aegypti.* J. Am. Mosq. Control Assoc. 32: 117–123.
- Nasir, S., M. Batool, S.M. Hussain, I. Nasir, F. Hafeez and M. Debboun. 2015. Bioactivity of oils from medicinal plants against immature stages of dengue mosquito *Aedes aegypti* (Diptera: Culicidae). Int. J. Agric. Biol. 17: 843–847.
- Nentwig, G., S. Frohberger and R. Sonneck. 2017. Evaluation of clove oil, icaridin, and transfluthrin for spatial repellent effects in three tests systems against the *Aedes aegypti* (Diptera: Culicidae). J. Med. Entomol. 54: 150–158.

- Ngadino, S.K. and S. Sudjarwo. 2017. Bioinsecticide effect of *Pinus merkusii* tree bark extract on *Aedes aegypti* larvae. J. Young Pharm. 9: 127–130.
- Oliveira, A.E., J.L. Duarte, J.R. Amado, R.A. Cruz, C.F. Rocha, R.N. Souto, R.M. Ferreira, K. Santos, E. C. da Conceição, L. A. de Oliveira and A. Kelecom. 2016. Development of a larvicidal nanoemulsion with *Pterodon emarginatus* Vogel oil. PLoS One. 11: e0145835.
- Patel, E.K., A. Gupta and R.J. Oswal. 2012. A review on: Mosquito repellent methods. Int. J. Pharm. Chem. Biol. Sci. 2: 310–317.
- Pérez López, L.A., Y.C. de la Torre, A.T. Cirio, N.W. de Torres, A.E. Flores Suárez and R.S. Aranda. 2015. Essential oils from *Zanthoxylum fagara* wild lime, *Ruta chalepensis* L. and *Thymus vulgaris* L. composition and activity against *Aedes aegypti* larvae. Pak. J. Pharm. Sci. 28: 1911–1915.
- Phasomkusolsil, S. and M. Soonwera. 2011. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pac. J. Trop. Biomed. 1: S113–S118.
- Pierre, D.Y.S., E.C. Okechukwu and N.E. Nchiwan. 2014. Larvicidal and phytochemical properties of *Callistemon rigidus* R. Br. (Myrtaceae) leaf solvent extracts against three vector mosquitoes. J. Vector Borne Dis. 51: 216.
- Porto, K.R., P.R. Motti, M. Yano, A.R. Roel, C.A. Cardoso and R. Matias. 2017. Screening of plant extracts and fractions on *Aedes aegypti* larvae found in the state of Mato Grosso do Sul (Linnaeus, 1762) (Culicidae). An. Acad. Bras. Ciênc. 89: 895–906.
- Prathibha, K.P., B.S. Raghavendra and V.A. Vijayan. 2014. Larvicidal, ovicidal, and oviposition-deterrent activities of four plant extracts against three mosquito species. Environ. Sci. Pollut. Res. 21: 6736–6743.
- Queen, M.M., P. Martin, K. Elumalai, C. Kandeepan, R.V. Kalaimathi and P. Sivamani. 2014. Effect of selected plant fumigants against dengue fever vector *Aedes aegypti* (Linn). Int. J. Curr. Res. Acad. Rev. 2: 294–303.
- Reegan, A.D., M.R. Gandhi, M.G. Paulraj and S. Ignacimuthu. 2015. Ovicidal and oviposition deterrent activities of medicinal plant extracts against *Aedes aegypti* L. and *Culex quinquefasciatus* Say mosquitoes (Diptera: Culicidae). Osong Public Health Res. Perspect. 6: 64–69.
- Ríos, N., E.E. Stashenko and J.E. Duque. 2017. Evaluation of the insecticidal activity of essential oils and their mixtures against *Aedes aegypti* (Diptera: Culicidae). Rev. Bras. Entomol. 61: 307–311.
- Rocha, D.K., O. Matosc, M.T. Novoa, A.C. Figueiredo, M. Delgado and C. Moiteiro. 2015. Larvicidal activity against *Aedes aegypti* of *Foeniculum vulgare* essential oils from Portugal and Cape Verde. Nat. Prod. Commun. 10: 677–682.
- Roland, E.H., J.E. Jan and J.M. Rigg. 1985. Toxic encephalopathy in a child after brief exposure to insect repellents. Can. Med. Assoc. J. 132: 155.
- Sakthivadivel, M. and T. Daniel. 2008. Evaluation of certain insecticidal plants for the control of vector mosquitoes viz. *Culex quinquefasciatus, Anopheles stephensi* and *Aedes aegypti*. Appl. Entomol. Zool. 43: 57–63.
- Santana, A.I., R. Vila, S. Cañigueral and M.P. Gupta. 2016. Chemical composition and biological activity of essential oils from different species of *Piper* from Panama. Planta Med. 82: 986–991.
- Sathantriphop, S., N.L. Achee, U. Sanguanpong and T. Chareonviriyaphap. 2015. The effects of plant essential oils on escape response and mortality rate of *Aedes aegypti* and *Anopheles minimus*. J. Vector Ecol. 40: 318–326.
- Sendi, J. and Ebadollahi, A. 2014. Biological activities of essential oils on insects, Pp. 129– 150. *In* Govil J.N. and S. Bhattacharya (ed.), Recent Progress in Medicinal Plants (RPMP): Essential Oils II. Vol. 37. Studium Press LLC, Houston, TX.
- Shaalan, E.A., D. Canyonb, M.W. Younesc, H. Abdel-Wahaba and A.H. Mansoura. 2005. A review of botanical phytochemicals with mosquitocidal potential. Environ. Int. 31: 1149– 1166.

- Sharma, V.P. and M.A. Ansari. 1994. Personal protection from mosquitoes (Diptera: Culicidae) by burning neem oil in kerosene. J. Med. Entomol. 31: 505–507.
- Shivakumar, M.S., R. Srinivasan and D. Natarajan. 2013. Larvicidal potential of some Indian medicinal plant extracts against *Aedes aegypti* (L.). Asian J. Pharm. Clin. Res. 6: 77–80.
- Siriporn, P. and S. Mayura. 2012. The effects of herbal essential oils on the ovipositiondeterrent and ovicidal activities of *Aedes aegypti* (Linn.), *Anopheles dirus* (Peyton and Harrison) and *Culex quinquefasciatus* (Say). Trop. Biomed. 29: 138–150.
- Soonwera, M. 2015a. Efficacy of essential oils from citrus plants against mosquito vectors Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). J. Agric. Technol. 11: 669–81.
- Soonwera, M. 2015b. Efficacy of essential oil from *Cananga odorata* (Lamk.) Hook. f. & Thomson (Annonaceae) against three mosquito species *Aedes aegypti* (L.), *Anopheles dirus* (Peyton and Harrison), and *Culex quinquefasciatus* (Say). Parasitol. Res. 114: 4531–4543.
- Sritabutra, D., M. Soonwera, S. Waltanachanobon and S. Poungjai. 2011. Evaluation of herbal essential oil as repellents against *Aedes aegypti* (L.) and *Anopheles dirus* Peyton & Harrison. Asian Pac. J. Trop. Biomed. 1: S124–S128.
- Swathi, S., G. Murugananthan and S.K. Ghosh. 2010. Oviposition deterrent activity from the ethanolic extract of *Pongamia pinnata*, *Coleus forskohlii*, and *Datura stramonium* leaves against *Aedes aegypti* and *Culex quinquefaciatus*. Pharmacogn. Mag. 6: 320.
- Tauxe, G.M., D. MacWilliam, S.M. Boyle, T. Guda and A. Ray. 2013. Targeting a dual detector of skin and CO₂ to modify mosquito host seeking. Cell 155: 1365–1379.
- Tennyson, S., D.A. Samraj, D. Jeyasundar and K. Chalieu. 2013. Larvicidal efficacy of plant oils against the dengue vector *Aedes aegypti* (L.) (Diptera: Culicidae). Middle East J. Sci. Res. 13: 64–68.
- Thanigaivel, A., S. Senthil-Nathan, P. Vasantha-Srinivasan, E.S. Edwin, A. Ponsankar, S. Selin-Rani, V. Pradeepa, M. Chellappandian, K. Kalaivani, A. Abdel-Megeed and R. Narayanan. 2017. Chemicals isolated from *Justicia adhatoda* Linn reduce fitness of the mosquito, *Aedes aegypti* L. Arch. Insect Biochem. Physiol. 94: e21384.
- **Trongtokit, Y., Y. Rongsriyam, N. Komalamisra and C. Apiwathnasorn. 2005.** Comparative repellency of 38 essential oils against mosquito bites. Phytother. Res. 19: 303–309.
- Uniyal, A., S.N. Tikar, M.J. Mendki, R. Singh, S.V. Shukla, O.P. Agrawal, V. Veer and D. Sukumaran. 2016. Behavioral response of *Aedes aegypti* mosquito towards essential oils using olfactometer. J. Arthropod Borne Dis. 10: 370.
- Vivekanandhan, P., S. Senthil-Nathan and M.S. Shivakumar. 2017. Larvicidal, pupicidal and adult smoke toxic effects of *Acanthospermum hispidum* (DC) leaf crude extracts against mosquito vectors. Physiol. Mol. Plant Pathol. 101: 1–7.
- Wannang, N.N., V.F. Ajayi, L.M.P. Dapar and T. Ohemu. 2015. Mosquito repellant property of *Azadirachta indica* extract (fruit bark and seed kernel). Sci. Res. J. 3.
- Ware, G.W. 2000. The Pesticide Book. (5th ed.). Thomson Corp., Stamford, CT.
- Weaving, A.J.S. and N.K. Sylvester. 1967. Pyrethrum as an insect repellent, part II: A laboratory technique for its evaluation as a mosquito repellent, and the influence of formulation on persistence. Pyrethrum Post. 9: 31–35.
- Wong, J., S.T. Stoddard, H. Astete, A.C. Morrison and T.W. Scott. 2011. Oviposition site selection by the dengue vector *Aedes aegypti* and its implications for dengue control. PLoS Negl. Trop. Dis. 5: e1015.
- Xue, R.D., D.R. Barnard and A. Ali. 2001. Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito *Aedes albopictus*. Med. Vet. Entomol. 15: 126–131.
- Yang, Y.C., E.H. Lee, H.S. Lee, D.K. Lee and Y.J. Ahn. 2004. Repellency of aromatic medicinal plant extracts and a steam distillate to *Aedes aegypti*. J. Am. Mosq. Control Assoc. 20: 146–149.

- Yap, H.H., K. Jahangir, A.S. Chong, C.R. Adanan, N.L. Chong, Y.A. Malik and B. Rohaizat. 1998. Field efficacy of a new repellent, KBR 3023, against *Aedes albopictus* (SKUSE) and *Culex quinquefasciatus* (SAY) in a tropical environment. J. Vector Ecol. 23: 62–68.
- Yu, K.X., C.L. Wong, R. Ahmad and I. Jantan. 2015. Mosquitocidal and oviposition repellent activities of the extracts of seaweed *Bryopsis pennata* on *Aedes aegypti* and *Aedes albopictus*. Molecules 20: 14082–14102.
- Zadikoff, C.M. 1979. Toxic encephalopathy associated with use of insect repellent. J. Pediatr. 95: 140–142.
- Zettel, C. and P. Kaufman. 2012. Yellow fever mosquito *Aedes aegypti* (Linnaeus) (Insecta: Diptera: Culicidae). University of Florida IFAS Extension. The Institute of Food and Agricultural Sciences, Gainesville, FL. edis.ifas.ufl.edu/pdffiles/IN/IN79200.pdf, last accessed 22 August 2017.
- Zhai, C., M. Wang, V. Raman, J.U. Rehman, Y. Meng, J. Zhao, B. Avula, Y.H. Wang, Z. Tian and I. Khan, A. 2017. *Eleutherococcus senticosus* (Araliaceae) leaf morphoanatomy, essential oil composition, and its biological activity against *Aedes aegypti* (Diptera: Culicidae). J. Med. Entomol. 54: 658–669.