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Abstract Western flower thrips, Frankliniella occidentalis (Pergande), are one of the most-
destructive insect pests of greenhouse-grown horticultural crops worldwide due to the direct
and indirect damage they cause to plants. Western flower thrips induce direct damage by
feeding on leaves and flowers and also cause indirect damage by vectoring certain
tospoviruses including Impatiens necrotic spot and Tomato spotted wilt viruses. As a result,
the threshold for this insect pest is near zero. Consequently, the primary means of
suppressing populations of western flower thrips in greenhouse production systems is the
application of insecticides. In general, insecticides are inexpensive, easy to apply, and
relatively effective. However, the selection pressure placed on western flower thrips
populations due to intensive applications of insecticides has resulted in severe problems
associated with the development of resistance. Therefore, in order to avoid the prospect of
insecticide resistance developing in western flower thrip populations, greenhouse producers
must implement a multitude of plant protection strategies including scouting, insecticide
rotations, insecticide mixtures, and the use of alternative insecticides (e.g., entomopathogenic
fungi and insect growth regulators) with broad-spectrum modes of action.
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Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera:

Thripidae), are one of the most-destructive insect pests of greenhouse-grown

horticultural crops, including vegetables and ornamentals (Helyer and Brobyn 1992,

Jensen 2000a, Kirk and Terry 2003, Lewis 1997,). Direct plant damage associated

with western flower thrips is a consequence of their feeding. Western flower thrips

possess piercing-sucking mouthparts that are used to obtain nutrients from plant

cells (Harrewijn et al. 1996), which can result in cell death and leaf or flower

deformation and can negatively impact marketability due to a decreased aesthetic

value (Childers 1997, Chisholm and Lewis 1984, Jensen 2000a). Indirect damage is

affiliated with adult transmission of the tospoviruses, Impatiens necrotic spot or

Tomato spotted wilt virus, which reduce crop aesthetic values and marketability

(Allen and Broadbent 1986, Pappu et al. 2009, Wijkamp et al. 1995). Therefore, due

to direct and indirect damage, greenhouse producers have minimal tolerance for
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this insect pest. Consequently, insecticides are the primary means of suppressing

western flower thrips populations in order to mitigate any direct and/or indirect

damage (Allen et al. 1993, Cloyd 2009a, Gao et al. 2012, Parrella 1995, Parrella

and Murphy 1996). Insecticides, however, may be ineffective in dealing with

western flower thrips populations because eggs are inserted into leaf tissues, and

pupae are typically located in the growing medium, which protects these life stages

from exposure to insecticides (Mound 1996, Reitz 2009). The natural behavior of

western flower thrips, where individuals reside in concealed, enclosed areas on

plants such as unopened terminal or flower buds, may reduce or limit direct

exposure to spray applications of contact insecticides (Hansen et al. 2003, Jensen

2000a, Zhang et al. 2008). In addition, and most importantly, western flower thrips

populations have developed resistance to many insecticides (Broadbent and Pree

1997, Gao et al. 2012, Helyer and Brobyn 1992, Immaraju et al. 1992,). Therefore,

this paper will focus on two topics related to the use of insecticides against western

flower thrips: (a) insecticide resistance and (b) strategies that may mitigate

insecticide resistance developing in western flower thrips populations.

Insecticide Resistance

Western flower thrips feed on a range of greenhouse-grown horticultural crops,

which increases their exposure to insecticide applications, even insecticides

targeting other insect or mite pests. As a result, western flower thrips have a high

propensity for developing resistance to different insecticides (Jensen 2000a). The

intense selection pressure placed on western flower thrips populations due to

frequent applications of insecticides exacerbates the potential for resistance to

develop. In addition, natural populations of western flower thrips may already

possess resistant alleles at low frequencies before exposure to insecticides. The

possession of pre-existing resistant traits increases the likelihood for resistance to

develop in western flower thrips populations (Roush and McKenzie 1987).

Furthermore, multiple generations per year in greenhouses increases the possibility

of western flower thrips populations developing resistance to insecticides (Immaraju

et al. 1992). The intensive use of insecticides removes susceptible individuals from

the population, consequently increasing the proportion or frequency of individuals

with resistant genotypes (Gao et al. 2012). Therefore, excessive use of insecticides

will induce rapid development of resistance due to selection pressure for resistant

individuals (ffrench-Constant and Roush 1990).

The first case of western flower thrips resistance to insecticides was reported in

1961 when the chlorinated cyclodiene, toxaphene, was found to be ineffective in

suppressing populations of the western flower thrips (Race 1961). Although there

have been subsequent instances of reduced efficacy of insecticides against

western flower thrips, the first actual record affiliated with resistance occurred

almost 30 years later (Robb 1989). Worldwide there are currently 153 documented

cases associated with western flower thrips populations that are resistant to

insecticides in at least seven chemical classes (Arthropod Pesticide Resistance

Database, Michigan State University, East Lansing, MI, http://www.

pesticideresitance.org; accessed November 2015). Furthermore, differences in

resistance may occur between the ‘‘lupin’’ and ‘‘greenhouse’’ strains of western
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flower thrips (Martin and Workman 1994). Western flower thrips populations are
continually exposed to pesticide applications intended to target other pests such as
aphids, whiteflies, and mites affiliated with multiple-pest complexes (Hussey 1965,
Diabate et al. 2002), thus increasing the rate of resistance development to specific
pesticides (Reitz et al. 2003). Another concern is that label rates of pesticides
(insecticides and miticides) often vary depending on the specific pest; therefore, a
label rate for western flower thrips may be lower or higher than that for other pests,
which could possibly enhance the development of resistance due to increased
exposure to different pesticides.

There is a well-substantiated hypothesis that only using insecticides to deal with
western flower thrips populations in greenhouse production systems will eventually
lead to populations developing resistance (Georghiou 1986). The rate of resistance
development in western flower thrips populations is primarily associated with three
biological parameters: (a) rapid (short) generation time, (b) high female reproductive
capacity (fecundity), and (c) a haplo-diploid breeding system (Bielza et al. 2008,
Brodsgaard 1989, Denholm et al. 1998, Hou et al. 2014, Jensen 1998, 2000a, Reitz
2009). The rapid generation time allows for multiple generations to be present
simultaneously during a crop production cycle (Gaum et al. 1994, Gerin et al. 1994),
with generations overlapping continuously. As a result, females can mate with
resistant progeny (off-spring) that subsequently increases the frequency of resistant
alleles in a population (Immaraju et al. 1992). Individuals that survive exposure to
an insecticide may pass on resistant traits to the next generation, thus enriching the
gene pool with resistant genes (Jensen 2000a). A high female reproductive
capacity or fecundity means that females lay between 150 and 300 eggs during
their 45-day lifespan (Gerin et al. 1999), which potentially increases the number of
individuals in subsequent generations that are exposed to insecticides.

A haplo-diploid breeding system involves resistant genes in males (haploid with
one set of chromosomes) that are directly exposed to selection after an insecticide
application, which accelerates the rate of resistance development. Certain genes/
alleles associated with resistance are fully expressed in haploid males whereas
completely diploid (double set of chromosomes) individuals may only possess
resistance if affiliated with recessive or codominant traits (Carrière 2003, Denholm
et al. 1998). Therefore, selection for resistance is enhanced in haploid individuals
as compared to diploid individuals.

The extensive movement of plant material, both regionally and internationally,
has increased problems with western flower thrips populations (Brodsgaard 1994).
Moreover, the development of insecticide resistance is an international issue, as
resistant genes/alleles associated with western flower thrips populations can be
spread through international trade of plant material from off-shore facilities that
utilize insecticides against western flower thrips, which, in some cases, are not
registered for use in the United States (R.A.C. pers. obs.). Furthermore, the
international trade of moving plant material from one country to another may
indiscriminately spread western flower thrips populations. In addition, the
international trade of plant material may indirectly spread populations (or variants)
of western flower thrips with resistant genes/alleles or specific resistance
mechanisms (Denholm and Jespersen 1998), which could consequently exacer-
bate the problem of insecticide resistance (Jensen 2000a). Therefore, mitigating
western flower thrips resistance must be dealt with on a global scale involving
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collaborations among countries (Zhang et al. 2008), which may dictate the need to
monitor for and possibly restrict the movement of plant material infested with
western flower thrips. Moreover, it will be necessary to obtain records of insecticides
used 2 weeks prior to shipping so that greenhouse producers can avoid using
similar insecticides once plants are incorporated into production systems. Although
the Animal and Plant Health Inspection Service already deals with screening
international imports of insects and plants, the problem is that when plant material is
received, inspections only account for approximately 10% of all imports due to labor
demand and the large quantity of imports. Furthermore, in some countries,
phytosanitary regulations are completely absent (Herrick pers. comm.).

One hypothesis is that the absence of susceptible individuals immigrating into
western flower thrips populations enhances resistance development (Bielza et al.
2008). However, the presumption is that individuals of wild, field populations of
western flower thrips immigrating into greenhouses are actually susceptible (no
insecticide resistance) and will breed with resistant individuals, thus delaying
resistance by diluting the gene pool of resistant individuals (Georghiou and Taylor
1977). In addition, breeding with resistant individuals will reduce the frequency of
resistant alleles in the population (Jensen 2000a) which assumes, however, that the
population of individuals immigrating is in fact not resistant to insecticides.
Nevertheless, many insecticides used in greenhouse production facilities are
initially introduced for use in agricultural cropping systems (R.A.C. pers. obs.).
Therefore, immigrating individuals may, in fact, possess resistant alleles or they
may not (Jensen 2000a). Moreover, immigration of resistant individuals exposed to
insecticides used in agricultural cropping systems may increase the rate at which
resistance develops to insecticides registered for use in greenhouses (Immaraju et
al. 1992).

Insecticide resistance is prevalent in many western flower thrips populations
worldwide and, as noted above, the extensive use of insecticides over the years
has led to certain western flower thrips populations developing resistance to
insecticides in seven chemical classes including organophosphate (e.g., diazinon
and acephate) (Brodsgaard 1994, Zhao et al. 1994), carbamate (e.g., bendiocarb,
methiocarb, and methomyl) (Jensen 1998, Zhao et al. 1995a), pyrethroid (e.g.,
fenvalerate, cypermethrin, and bifenthrin) (Herron and Gullick 2001, Zhao et al.
1995b), neonicotinoid (e.g., imidacloprid) (Herron and James 2005, Zhao et al.
1995c), spinosyn (e.g., spinosad) (Herron and James 2005, Loughner et al. 2005),
macrocycle lactone (e.g., abamectin) (Immaraju et al. 1992, Kontsedalov et al.
1998), and pyrazole (e.g., fipronil) (Herron and James 2005). The means by which
western flower thrips populations develop resistance is associated with certain
resistance mechanisms.

The resistance mechanisms affiliated with western flower thrips populations
include enhanced metabolic detoxification and target site modifications (Brods-
gaard 1994, Espinosa et al. 2005, Herron and James 2005, Jensen 2000a, Zhao et
al. 1995b). In regard to metabolic detoxification, there are three primary enzyme
systems involved including esterases, glutathione S-transferases, and cytochrome
P-450 mono-oxygenases (Maymo et al. 2002, Soderland and Bloomquist 1990).
The main function of these enzyme systems is to convert hydrophobic (water-
hating) compounds, such as insecticides, into less-biologically active compounds
that are hydrophilic (water-loving) and are subsequently removed during excretion
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(Jensen 2000a). In addition to enhanced metabolic detoxification, insensitive
acetylcholinesterase has been implicated as a resistance mechanism to organo-
phosphates (Zhao et al. 1994). Furthermore, multiple resistance mechanisms may
be involved or coexist in a single strain or population of western flower thrips
(Jensen 1998, 2000a).

Because western flower thrips are highly polyphagous, feeding on a multitude of
horticultural and ornamental plant types, populations of western flower thrips may
have inherently evolved the genes/alleles that encode for the three enzyme
systems mentioned above, thus promoting resistance development (Li et al. 2007).
The most-important metabolic resistance enzyme system affiliated with western
flower thrips populations is the cytochrome P-450 mono-oxygenases that confer
cross-resistance (based on a single mechanism conferring resistance to insecti-
cides in the same chemical class and/or having similar modes of action) to
insecticides within and among different chemical classes (Espinosa et al. 2005).
However, cross-resistance depends on the insecticide chemical class, as reports
have indicated that ‘knockdown resistance’ may be responsible for pyrethroid
resistance in certain greenhouse populations of western flower thrips (Immaraju et
al. 1992, Zhao et al. 1995b). Moreover, modifications to the enzyme, acetylcho-
linesterase, may be responsible for resistance to insecticides in the chemical
classes associated with organophosphates (e.g., diazinon) and carbamates (e.g.,
methiocarb) (Jensen 2000b, Zhao et al. 1994). Nonetheless, other mechanisms,
such as glutathione S-transferases, esterases, target-site sensitivity, altered
acetylcholinesterace, and even reduced penetration, may be involved in resistance
to different insecticides (Espinosa et al. 2005).

Spinosad (ConserveT, Dow AgroSciences LLC; Indianapolis, IN), which is one of
the most-widely used insecticides to suppress western flower thrips populations in
greenhouse production systems (Loughner et al. 2005), became less effective as a
consequence of resistance developing in western flower thrips populations,
primarily due to overuse by greenhouse producers (Bielza et al. 2007, Loughner
et al. 2005). For instance, failures in suppressing western flower thrips populations
with spinosad, which occurred in Florida in 2006, were associated with resistance
(Weiss et al. 2009). However, the mechanism involved is not metabolic
detoxification but appears to be related to modifications, alterations, or reduced
sensitivity of the target site (e.g., nicotinic acetylcholine receptor) (Bielza et al. 2007,
Gao et al. 2012, Zhang et al. 2008) and may also be subsequently influenced by
several genes or alleles (Zhang et al. 2008). In fact, spinosad resistance may be
monogenic (when only one gene confers resistance, resulting in rapid development
of resistance) or polygenic (when more than one gene confers resistance, leading
to slow resistance development) (Bielza et al. 2007, Zhang et al. 2008).
Furthermore, Hou et al. (2014) reported that resistance to spinosad was completely
recessive and autosomal.

A major problem is dealing with western flower thrips populations having multiple
resistance mechanisms to certain insecticides, which increases the probability of
cross-resistance to unrelated insecticides (Gao et al. 2012). For instance, western
flower thrips populations may possess two different resistance mechanisms, such
as increased acetylcholinesterase activity and insensitive acetylcholinesterase
(Jensen 1998, Zhao et al. 1994). There is the perceived implication that the level
(based on fitness and stability) of resistance within a western flower thrips
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population will diminish more rapidly in the absence of insecticide exposure.

Resistance, in general, has been observed to be affiliated with fitness costs (Roush

and Daly 1990) including reduced longevity, fecundity, fertility, or decreased

development time (Argentine et al. 1989, Ferrari and Georghiou 1981). However,

western flower thrips populations may not exhibit any fitness costs in regard to

insecticide resistance (Bielza et al. 2008). Consequently, a lack of fitness costs

enhances the stability of resistance, thereby reducing the prospects of reverting

populations back to susceptibility (Roush 1993), which may accelerate the rate of

resistance development. Furthermore, the speed or rate of resistance development

may be associated with resistant females having a higher fecundity and fertility than

susceptible females (Bielza et al. 2008).

Another factor related to insecticide resistance in western flower thrips

populations is demographics. The effect of demographics (e.g., north versus south)

can influence the selection pressure placed on western flower thrips populations

due to differences in longevity of the growing season and, consequently, the

number and frequency of insecticide applications, which can influence the

propensity for resistance to develop. Moreover, plant material that contains western

flower thrips populations that were previously exposed to insecticides may be

moved northward (R.A.C. pers. obs.). Typically, during early spring through late fall,

greenhouse producers may conduct two to three applications every 5 to 7 days to

suppress western flower thrips populations (Robb and Parrella 1995). Any

subsequent applications are conducted to kill larvae and adults that were in the

egg or pupal stages during previous applications (Parrella 1995).

Strategies that May Mitigate Insecticide Resistance

There needs to be a realization that greenhouse producers are going to continue

to use insecticides against western flower thrips due to low tolerance for this insect

pest. However, alternative plant protection strategies need to be implemented

including cultural control (e.g., fertility), sanitation (e.g., weed and plant debris

removal), physical control (e.g., screening greenhouse openings), and biological

control (e.g., releasing predatory mites). These strategies, which are well known,

may help reduce the selection pressure placed on western flower thrips populations

from insecticide applications (Cloyd 2009a, 2015). There are a number of strategies

that greenhouse producers currently use and can implement in the future to avoid

the prospect of insecticide resistance developing in western flower thrips

populations. These include scouting, insecticide rotations, insecticide mixtures,

and the use of alternative insecticides with broad-spectrum modes of action.

Scouting. In general, scouting involves routinely monitoring western flower

thrips populations using colored sticky cards (Cloyd and Sadof 2003, Heinz et al.

1992, Pizzol et al. 2010) in order to obtain information on population changes

throughout the growing season to help time insecticide applications (Binns and

Nyrop 1992, Heinz et al. 1992, Schmidt and Frey 1995). Information gained from

scouting is intended to be used to target the most-susceptible life stages so as to

reduce insecticide inputs, which consequently could decrease the potential for

insecticide resistance. However, no quantitative information indicates that scouting

reduces insecticide resistance under greenhouse conditions. Nonetheless, scouting
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at least provides a quantitative assessment of the population dynamics occurring in
the greenhouse, both spatially and temporally (Cloyd and Sadof 2003, Pizzol et al.
2010). In addition, scouting not only involves the use of sticky cards but also visual
inspection of the crop to determine the presence of larvae on plant parts (leaves
and flowers).

Thresholds are a means to determine the extent of western flower thrips
populations during the growing season and ascertain the level or number of western
flower thrips that warrant the need to implement measures to avoid damage (Peck
and Ellner 1997). Thresholds indicate that western flower thrips can be tolerated at
some level, which may reduce the frequency of insecticide applications and
consequently resistance (Cloyd and Sadof 2003, Peck and Ellner 1997). However,
thresholds can vary depending on the specific crop. For example, thresholds range
from 20 to 50 western flower thrips adults captured on sticky cards per week, with
variability based on different crop types including rose (Rosa spp.), carnation
(Dianthus caryophyllus L.), and strawberry (Fragaria 3 ananassa Duchesne ex
Weston) (Casey and Parrella 2002, Cloyd and Sadof 2003, Steiner and Goodwin
2005). Thresholds may indicate that spray applications of insecticides are not
required during certain times of the year due to low numbers of western flower
thrips, which may lessen the potential for western flower thrips populations to
develop resistance to insecticides (Cloyd and Sadof 2003, Nyrop et al. 1999).
Thresholds may be more practical when crops are less susceptible to the viruses
transmitted by western flower thrips whereas the use of thresholds may not be
feasible for virus-sensitive crops because adult western flower thrips may be
transmitting viruses. In this case, insecticide use may be intensified in order to
suppress western flower thrips populations to low levels, consequently enhancing
the development of resistance.

Insecticide rotations. Insecticide rotation is the temporal alternation of
insecticides that have different modes of action (Immaraju et al. 1990). One of
the primary means of alleviating resistance or mitigating the potential for western
flower thrips populations developing insecticide resistance, and consequently
extending the effectiveness of currently available insecticides, is rotating
insecticides with different modes of action (Roush 1989, Robb and Parrella
1995). However, the rotation of insecticides with distinct modes of action will only be
effective in delaying resistance if the insecticides applied select for different
resistance mechanisms (Jensen 2000a). General recommendations include
rotating different modes of action every 2–3 weeks or within a generation (Cloyd
2009a), although this depends on the time of year and ambient air temperatures in
the greenhouse because development of the life cycle is contingent on temperature
(Gaum et al. 1994, Lublinkhof and Foster 1977). In fact, higher temperatures can
result in faster population growth, which can lead to increased insecticide
applications, consequently enhancing the frequency of resistance (Peck and Ellner
1997). The concept is to use one mode of action within a generation, early in the
crop production cycle, and then switch to a different mode of action in subsequent
generations (Herron and Cook 2002). Therefore, the ideal situation is to utilize a
multitude of insecticides with different modes of action (Jensen 2000a). Insecticide
rotations have been reported to be more effective than insecticide mixtures
(discussed below) (Immaraju et al. 1990), although this has not always been the
case (Skylakakis 1981).
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A potential problem associated with insecticide rotations is that western flower
thrips populations may evolve different resistance mechanisms to the same
insecticide (Bielza 2008). Furthermore, if cross-resistance occurs in a western
flower thrips population, then rotating insecticides with different modes of action will
not be effective in mitigating resistance (Comins 1986, Mani 1985). The rotation of
insecticides with distinct modes of action is based on the assumption that the
frequency or proportion of individuals in a western flower thrips population resistant
to one insecticide will be reduced when an alternative insecticide with a different
mode of action is applied (Hoy 1998, Mallet 1989, Mani 1985). Consequently, the
frequency of resistant individuals declines in subsequent generations in which the
initial insecticide is not applied. As such, when the first insecticide is reapplied there
is a high frequency of susceptible individuals to the initial insecticide used as
compared to insecticides that are applied afterward (Georghiou 1980). Therefore,
the initial insecticide will provide effective suppression of a western flower thrips
population when reintroduced into the rotation program (Mani 1985, Yu 2008).
Rotating insecticides with different modes of action will reduce selection pressure
as opposed to using only one insecticide (Brodsgaard 1994), resulting in exposure
of individual western flower thrips to only one mode of action during their lifetime.
Also, rotating insecticides with different modes of action is important in preserving
existing insecticide products as well as in effectively managing western flower thrips
populations (Denholm and Rowland 1992, Loughner et al. 2005). A factor, however,
that may influence insecticide rotations is the stability of resistance, where
resistance to certain insecticides may be retained in future generations despite
rotating different modes of action (Georghiou and Taylor 1986). Therefore, rotation
programs need to include a number of insecticides with different modes of action
and also select for different resistance mechanisms (Dekeyser 2005).

Insecticide mixtures. Because greenhouse producers not only have to contend
with western flower thrips but also other insect and/or mite pests, they will mix or
combine pesticides (e.g., insecticides and miticides). These pesticide mixtures are
designed to broaden the spectrum of activity and subsequently suppress multiple
insect and mite pest populations including aphids, mealybugs, mites, whiteflies, and
thrips (Cloyd 2009b, Warnock and Cloyd 2005). Insecticide mixtures may suppress
resistant genes or alleles that are recessive, consequently leading to resistance to
only one insecticide. However, insecticide mixtures may actually select for dominant
genes/alleles that confer cross-resistance (Tabashnik 1989). The rate of resistance
development in a western flower thrips population to two or more insecticides in a
mixture may be delayed compared to applying the insecticides separately (National
Research Council 1986), although resistance to an insecticide mixture may occur at
a similar rate compared to separate applications of insecticides (Kable and Jeffery
1980). Studies have determined the efficacy of insecticide mixtures against
populations of western flower thrips. For example, Warnock and Cloyd (2005) found
that all two, three, and four-way combinations of spinosad with the other
insecticides and miticides evaluated (e.g., abamectin, azadirachtin, bifenazate,
and imidacloprid) did not influence the efficacy of spinosad in suppressing western
flower thrips populations. In addition, Willmott et al. (2013) and Cloyd and
Raudenbush (2014) demonstrated that all binary insecticide and miticide mixtures
evaluated, which involved many different pesticides, provided approximately 80%
mortality of western flower thrips. It is important to note that mixtures will only be
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effective in alleviating or mitigating resistance if the insecticides used have similar
persistence (residual activity) and the western flower thrips populations do not
exhibit any cross-resistance to the insecticides used in the mixture (Forgash 1984,
Mani 1985, Tabashnik 1989).

Alternative insecticides. The use of alternative insecticides with broad-
spectrum modes of action may help to alleviate problems associated with
insecticide resistance in western flower thrips populations. Alternative insecticides
include entomopathogenic fungi, insect growth regulators, and plant-derived
essential oils.

Entomopathogenic fungi are typically applied as sprays to the plant leaves and
may reduce selection pressure due to the unique mode of action by which they
induce insect mortality. In general, fungal spores germinate and hyphae penetrate
the insect cuticle by enzymatic degradation and mechanical pressure (Gillespie and
Claydon 1989, Clarkson and Charnley 1996) and then consumption of internal
tissues occurs (Hall et al. 1984). Mortality is typically dose-dependent, with higher
spore concentrations resulting in quicker kill and higher mortality of insects
(Vestergaard et al. 1995, James et al. 1998). The larvae and adult life stages are
susceptible to infection by entomopathogenic fungi (Ansari et al. 2007); however,
adults are more susceptible to infection than are larvae (Vestergaard et al. 1995,
Maniania et al. 2001, Shipp et al. 2003). The entomopathogenic fungi, Beauveria
bassiana (Bals.) Vuill., Isaria fumosoroseus (Wize) Brown & Smith (formerly
Paecilomyces fumosoroseus), and Metarhizium anisopliae (Metschnikoff ), can be
substituted for standard insecticides (Murphy et al. 1998), which may diminish or
mitigate resistance (Maniania et al. 2001). For instance, Kivett et al. (2015)
demonstrated that rotation programs that involve entomopathogenic organisms,
such as entomopathogenic fungi (B. bassiana, M. anisopliae, and I. fumosoroseus)
and a bacterium (Chromobacterium subtsugae Martin), were just as effective as,
and less costly than, rotation programs that rely on standard insecticides (e.g.,
spinosad, abamectin, pyridalyl, and chlorfenapyr). The use of entomopathogenic
fungi will be most effective when western flower thrips populations are at low
densities and when integrated with noninsecticidal strategies (Maniania et al. 2001).

Insect growth regulators are chemical compounds that disrupt the molting
process or modify insect growth and development, thus leading to insect death (Yu
2008). Insect growth regulators, applied as either foliar sprays or drenches to the
growing medium, have had limited use against western flower thrips. The main
reason for the minimal use of insect growth regulators against western flower thrips
is that most insect growth regulators are only directly active on the larval stage, not
on the adults (Dhadialla et al. 1998, Ware 2005). Ascher et al. (1992) found that
exposure to the insect growth regulator, azadirachtin, did not have any effect on
adult female mortality or reduce female fecundity, and there were no effects on the
larvae. However, Thoeming et al. (2003) reported that azadirachtin, when applied to
the growing medium, may have systemic activity against the larvae with mortality
between 70% and 90%. The insect growth regulators, diflubenzuron and
pyriproxyfen, when applied to the growing medium to target the pupae, resulted
in a substantial reduction in the emergence of western flower thrips adults (Ludwig
and Oetting 2001). Studies have shown that mixing an insect growth regulator such
as azadirachtin with another insecticide that includes an entomopathogenic fungus
(B. bassiana) has synergistic effects against western flower thrips (R.A.C. unpubl.
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data). However, under laboratory conditions, there was no evidence of any

synergistic effects when azadirachtin was combined with certain entomopathogenic

fungi including B. bassiana and I. fumosoroseus (Kivett unpubl. data). The use of

insect growth regulators may help to mitigate insecticide resistance in western

flower thrips populations if they are applied early in the production cycle before

overlapping generations and different life stages (eggs, larvae, pupae, and adults)

are present simultaneously.

Plant-derived essential oils are obtained by means of steam distillation from

aromatic plants with products developed from several botanical sources (Koul et al.

2008). Certain plant-derived essential oils have been shown to act as repellents

against western flower thrips (Picard et al. 2012); however, commercially available

products based on rosemary, peppermint, cinnamon, clove oil, and garlic extract

demonstrated minimal contact activity against western flower thrips, with an overall

mortality ,30% (Cloyd et al. 2009). Furthermore, a number of plant-derived

essential oils are phytotoxic to many plants (Hollingsworth 2005, Isman 1999).

Therefore, the low mortality and potential for phytotoxicity suggests that the use of

plant-derived essential oils will not be a feasible option to greenhouse producers in

mitigating insecticide resistance.

Conclusion and Future Research Efforts

Insecticides will continue to be used to suppress western flower thrips

populations in order to maintain the aesthetics of high-value horticultural and

ornamental crops (Gao et al. 2012) as well as the fact that western flower thrips

vector a number of tospoviruses (Allen and Broadbent 1986, Pappu et al. 2009).

However, problems associated with the introduction of new insecticides for use

against western flower thrips populations in greenhouse production systems are the

costs and regulations of registering a new active ingredient, subsequently resulting

in fewer new active ingredients being introduced into the marketplace against

western flower thrips (Lewis 1977, Reitz and Funderburk 2012). In fact, there is the

possibility that no new active ingredients will be added to the existing array of

insecticides. Nevertheless, greenhouse producers need to exercise caution and

judiciously use insecticides in order to prolong their effectiveness (Nauen and

Denholm 2005). Although resistance may be a contributing factor responsible for

inadequate suppression of western flower thrips populations, failures can also be

attributed to insufficient spray coverage or improper timing of applications (Shelton

et al. 2006).

Greenhouse producers should assume that populations of western flower thrips

in greenhouses are resistant to one or more insecticides. Nevertheless, it is

important to rotate insecticides with different modes of action and use insecticides

with broad modes of activity in order to reduce the frequency of resistant genes or

alleles within a western flower thrips population (Georghiou 1994). Proper rotation

programs need to be implemented that do not over-use the same mode of action in

order to preserve the effectiveness of existing insecticide products by abiding with

the IRAC (Insecticide Resistance Action Committee, http://www.irac-online.org;

accessed November 2015) label designations. Moreover, most insecticide labels

contain resistance management information in order to curtail the advent of
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resistance, thus preserving the effectiveness of existing products. For example, the
Conserve (active ingredient ¼ spinosad) label states the following:

‘‘Do not make more than two consecutive applications of Group 5
insecticides. If additional treatments are required after two consecutive
applications of Group 5 insecticides, rotate to another class of effective
insecticides for at least one application.’’

However, the sole use of insecticides against western flower thrips is not a
sustainable strategy. Therefore, it is important that greenhouse producers
implement noninsecticidal strategies (e.g., sanitation, screening, and biological
control) in order to reduce the input of insecticides and consequently the selection
pressure placed on western flower thrips populations.

Current and future research efforts associated with western flower thrips
management in greenhouse production systems include: (a) using multiple
biological control agents (Ebssa et al. 2006, Premachandra et al. 2003, Saito and
Brownbridge 2016), and (b) integrating insecticides with biological control agents
(Messelink et al. 2014, Saito and Brownbridge 2016, Thoeming and Poehling
2006). Both of these strategies are designed to reduce insecticide inputs, thus
diminishing selection pressure placed on western flower thrips populations, and to
decreasing insecticide resistance.
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