Macrogeographic Genetic Variation in Populations of the Webbing Coneworm (Lepidoptera: Pyralidae)¹

James A. Richmond

USDA Forest Service, Southern Research Station 3041 Cornwallis Road Research Triangle Park, NC 27709 USA

ABSTRACT Genetic variation among 14 populations of *Dioryctria disclusa* Heinrich adults was examined using starch gel electophoresis. The average number of alleles per locus exceeded 2.0 in all populations. The number of polymorphic loci exceeded 70% in 11 populations. Genetic structure data suggest moderate differentiation (average F_{st} , 0.111) among the populations. Most of the differentiation is attributable to three of the eight loci (MDH, ME, and IDH). Nei's genetic identity ranged from 0.77-1.00 between populations. A phenogram based on genetic identity and unweighted pair-group method of analysis (UPGMA) clustered five of six populations in North Carolina closely together. With a cophenetic correlation of 0.96 the phenogram constructed is acceptable.

KEY WORDS Pine coneworm, populations, genetic similarity.

Larvae of *Dioryctria disclusa* Heinrich attack the cones of trees in the genus *Pinus* (Hedlin et al. 1981). The number of cones damaged or lost varies from year to year in natural and managed stands. Fluctuation in damage levels is a reflection of the size of the insect population. Dynamics of populations are affected by environmental factors and evolutionary forces (Nei 1987).

Assuming moderate vagility and limited migration, contact among widely separated populations of *D. disclusa* is unlikely. Restriction of gene flow among populations and random genetic drift within populations can produce genetically differentiated organisms (Hartl and Clark 1989). The genetic structure of subdivided populations can be measured by analyzing the differences in gene frequencies of organisms in patches or regions with imaginary boundaries (Nei 1977, Wright 1965).

The objective of this study was to describe the amount of genetic variation within and genetic similarity among 14 populations of D. *disclusa* in the eastern United States.

J. Entomol. Sci. 30(3): 349-358 (July 1995)

¹ Accepted for publication 18 February 1995.

Materials and Methods

Adult males of *D. disclusa* populations were collected in 1985 during their single annual flight period, on sticky traps baited with a synthetic pheromone. Traps were deployed at 13 locations in five eastern states (Table 1, Fig. 1). Moribund moths were counted and discarded. Only fresh and active moths were stored for analysis. Pupae collected from *P. sylvestris* cones near Lindenwood (LIN), Illinois were held for eclosion. Twenty-two of 24 moths from the LIN location were used in this study.

Stored for up to 12 months, the insects were maintained at -60C until horizontal starch gel electrophoresis was conducted. Individual insects were placed in a shallow plexiglas well; 1-2 drops of slightly modified extraction buffer II (Cheliak and Pitel 1984) were added; and the specimen was ground with a glass rod. Filter paper wicks, used to absorb the sample from the shallow well, were placed in slits in 12% starch gels.

Electrophoresis and histochemical staining followed standard techniques (Shaw and Prasad 1970, Harris and Hopkinson 1976), except as noted. Seven enzyme systems were resolved using Tris-citrate buffer, pH 6.2. The results are reported for the enzymes at eight loci: Leucine aminopeptidase (LAP-2, LAP-3), aspartate aminotransferase (AAT-1), isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH), glucose-3-phosphate dehydrogenase (G3PDH), esterase (EST-2), and malic enzyme (ME-1). Other enzyme systems surveyed are not reported because results were inconsistent or surveys were not run for all populations.

Analysis of single individual genotype data was performed with BIOSYS-1 computer program developed by Swofford and Selander (1981). Rare alleles with frequencies less than 0.010 (Hartl and Clark 1989) were pooled. The program generated the following output: allelic frequencies table; genetic varability as mean number of alleles per locus, percentage of polymorphic loci, and mean heterozygosity; contingency chi-square across loci; F-statistics; genetic similarity (I); and a phenogram using genetic similarity and the unweighted pair-group method of analysis (UPGMA).

Results and Discussion

Allele frequencies for the eight loci analyzed are listed in Table 2. Alleles were fixed at four loci (LAP-2, LAP-3, AAT-1, and IDH) in the small outlier population in Illinois. Alleles were fixed at the AAT-1 locus in four additional populations, at the MDH locus in three populations and at the ME-1 locus in nine populations.

The mean number of alleles per locus, percent polymorphic loci, and mean heterozygosity are presented in Table 3. Genetic variability was substantial within the populations. The average number of alleles ranged from 2.1 per locus in the isolated Illinois population to 3.5 per locus in the RAL-2 population in NC. Ten of the populations had 75-100% polymorphic loci. The average heterozygosity exceeded 0.20 in 12 of the 14 populations. Genetic variability within several populations was significantly reduced by fixation of alleles at the ME locus.

A comparison of allele frequencies at the loci among all populations indicates heterogeneity across the geographic range of D. disclusa (Table 4). The contingency chi-square values are highly significant at all loci.

States	Townships	Sites*	No. caught
NC	Murfreeboro (MUR)	Union Camp	135
	Research Triangle Park (RTP)	Triangle	242
	Raleigh (RAL-1)	Dix	311
	Raleigh (RAL-2)	Schenck	251
	Goldsboro (GOL)	Piedmont	184
	Lumberton (LUM)	Federal	31
SC	Newberry (NEW)	Champion	116
GA	Athens (ATH)	Baldwin	59
	Milledgeville (MIL)	Georgia Kraft	67
AL	Butler (BUT)	Reid	86
	Eutaw (EUT)	Weyerhaeuser	67
	Tuscaloosa (TUS)	Gulf States	57
MS	Roxie (ROX)	McNair	157

Table 1. Number of moths caught on sticky traps at 13 locations.

*Triangle and Dix are natural mixed pine-hardwood stands; Schenck is managed natural pine stand; and all others are managed seed orchards.

Fig. 1. Collection sites of *Dioryctria disclusa* adults used for macrogeographic genetic variation study.

	14 LIN IL	22 .000 .000	22 .000 .000	22 1.000 .000 .000	22 .000 .000 .000 .000	22 .000 .977 .023 .000
	13 MIL GA	34 .912 .088	34 .118 .765 .118	34 1.000 .000 .000	34 .015 .985 .000 .000	34 .015 .985 .000
	12 ATH GA	30 .100 .000	.30 .133 .867 .000	30 1.000 .000 .000	30 .183 .800 .017 .000	30 .000 .000 .000 .000
	11 ROX MS	128 .973 .027	127 .087 .783 .130	128 .973 .012 .016	128 .059 .012 .012 .000	128 .016 .973 .012
	10 TUS AL	34 985 015	.34 .147 .735 .118	34 1.000 .000 .000	34 500 .500 .000 .000	34 .000 .000 .000 .000
	9 BUT AL	68 .971 .029 .000	68 .169 .794 .037	68 .971 .029 .000	68 .051 .949 .000 .000	68 .074 .926 .000
ulation	v EUT AL	64 .883 .117 .000	65 .085 .708 .208	65 .962 .038 .000	65 .308 .677 .015 .000	65 .231 .746 .023 .000
Pop	7 NEW SC	68 .868 .132 .000	68 .066 .824 .110	68 .956 .044 .000	68 .015 .985 .000 .000	68 .000 .015 .015
	6 GOL NC	101 .950 .050 .000	101 .104 .743 .153	102 .931 .054 .015	102 .029 .971 .000	102 .015 .956 .029 .000
	5 MUR NC	126 .933 .067 .000	126 .060 .155	126 .972 .028 .000	126 .060 .012 .000	126 .107 .893 .000
	4 LUM NC	30 .500 .000	30 .017 .583 .400	30 .967 .033 .000	30 500 .000 .000	30 .000 .000 .000 .000
	3 RTP NC	154 .756 .224 .019	153 .101 .866 .033	154 .990 .010 .000	154 .032 .955 .013 .000	154 .029 .955 .016
	2 RAL-2 NC	223 .874 .126 .000	223 .112 .780 .108	223 .984 .016 .000	223 .094 .018 .000	223 .025 .000 .000
	1 2 RAL-1 RAL-2 NC NC	188 .979 .021	188 .452 .481 .066	188 .976 .013 .011	217 .159 .841 .000	188 .000 .979 .021 .000
	Locus		LAP-3 (N) 2 3 2	AAT-1 (N) 3 2 2 1	ШН (N) 4 4 3 3 2 1 (N)	10 N) 1 2 8 4

u.sc
ch
dis
ä
E
č
ior
f D
0 9
ion
ati
uli
ģ
d u
s in
ncie
- DC
Ĭ
frec
Ð
Nlel
4
લં
able
Tal
Γ.

ъ
Ō
3
R
·E
ā
5
Ō
Ξ.
ાં
Ð
—
<u>_</u>
5
H

•

							Po	Population						
	1	2	3	4	5	9	7	æ	6	10	11	12	13	14
Locus	RAL-1 R/ NC	RAL-2 NC	RTP NC	LUM NC	MUR NC	GOL	NEW	EUT AL	BUT AL	TUS AI,	ROX MS	ATH GA	MIL GA	II' II'
													5	
G3PDH														
*(Z)	180	221	94	28	120	68	68	31	68	27	124	30	32	22
1	760.	.016	.011	000.	000.	.015	000.	.032	000.	000.	690.	000.	.109	.091
7	.447	.670	.686	.482	.683	.757	.743	.532	.728	.704	.440	006.	.688	.864
c,	.303	.145	.181	.196	.204	.059	960.	.194	960.	.111	.226	.017	.078	.045
4	.153	.152	.122	.321	.112	.169	.162	.242	.176	.185	.266	.083	.125	000.
5	000.	.018	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.
EST-2														
(Z)	180	219	148	26	114	97	68	57	68	30	118	27	34	22
1	.228	.267	.257	.115	.039	.062	.074	.088	.103	.067	.068	000.	.103	.250
61	.403	.288	.328	.135	.030	.057	.029	.061	.081	.067	.068	.056	.044	.136
ന	.114	.116	.193	.058	.246	.160	.228	.175	.176	.167	.169	.111	.147	.091
4	.197	.256	.206	.308	.478	.670	.544	.614	.434	.483	.521	.611	.632	.159
ъ	.047	.073	.017	.288	.206	.052	.110	.061	.206	217	.174	.167	.044	.341
9	.011	000.	000.	960.	000.	000.	.015	000.	000.	000.	000.	.056	.029	.023
ME-1														
Ê	127	223	154	30	126	.102	68	65	68	34	128	30	34	22
1	.988	1.000	1.000	1.000	1.000	1.000	.985	1.000	.971	1.000	1.000	1.000	.956	.523
7	.012	000.	000.	000.	000.	000.	.015	000.	.022	000.	000.	000.	.044	.477
e	000.	000.	000.	000.	000.	, 000	000.	000.	200.	000.	000.	000.	000.	000.

⁽N) Refers to the number of individuals analyzed at each locus for each population.

	Mean sample	Mean no.	Percentage	Mean heterozygosity
Population	size per locus	of alleles per locus	of loci polymorphic*	Hardy-Weinberg expected
1. RAL-1-NC	182.0	3.0	100.0	0.299
	(8.9)	(0.5)		(0.110)
2. RAL-2-NC	222.3	2.9	100.0	0.268
	(0.5)	(0.5)		(0.094)
3. RTP-NC	145.6	3.0	100.0	0.256
	(7.4)	(0.4)		(0.093)
4. LUM-NC	29.3	2.5	75.0	0.378
	(0.5)	(0.6)		(0.110)
5. MUR-NC	123.8	2.6	87.5	0.252
	(1.6)	(0.4)		(0.082)
6. GOL-NC	96.9	2.9	100.0	0.212
	(4.2)	(0.4)		(0.070)
7. NEW-SC	68.0	2.8	100.0	0.221
	(0.0)	(0.5)		(0.079)
8 EUT-AL	59.6	2.9	87.5	0.349
	(4.2)	(0.4)		(0.082)
9 BUT-AL	68.0	2.6	100.0	0.239
	(0.0)	(0.4)		(0.086)
10 TUS-AL	32.6	2.3	62.5	0.266
	(0.9)	(0.5)		(0.102)
11. ROX-MS	126.1	3.0	100.0	0.250
	(1.3)	(0.4)		(0.100)
12. ATH-GA	29.6	2.3	62.5	0.191
	(0.4)	(0.5)		(0.072)
13. MIL-GA	33.8	2.8	87.5	0.222
	(0.3)	(0.6)		(0.082)
14 LIN-IL	22.0	2.1	50.0	0.199
	(0.0)	(0.6)		(0.106)

Table 3. Genetic variability at gene loci in populations of Dioryctriadisclusa (standard errors in parentheses).

* A locus is polymorphic at the 0.99 criterion level.

The genetic structure of the populations is summarized by F-statistics in Table 5. The average $F_{\rm st}$ is 0.111 which indicates moderate genetic differentiation among the populations (Hartl 1980). The $F_{\rm st}$ value suggests that a high proportion (85.3%) of differences in allelic frequencies among the populations is due to variation among individuals within populations. The average $F_{\rm is}$ is 0.253 which indicates substantial variation within individuals in the populations. Although the $F_{\rm is}$ values are negative for three loci, random mating is assumed within the populations.

Genetic similarities and distances between populations are shown in Table 6. Using genetic similarity and UPGMA, a phenogram (Fig. 2) was constructed. Goodness-of-fit statistics (cophenetic correlation, 0.96; percent standard deviation,

Locus	No. of alleles	Chi-square	df	Р
LAP-2	3	283.138	26	.00000
LAP-3	3	449.008	26	.00000
AAT-1	3	51.393	26	.00214
IDH	3	363.208	26	.00000
MDH	3	1171.174	26	.00000
G3PDH	5	313.158	52	.00000
EST-2	6	859.616	65	.00000
ME-1	2	735.740	13	.00000
Totals		4226.335	260	.00000

 Table 4. Contingency chi-square analysis for testing homogeneity across populations.

Table 5. F-statistics of loci examined for population genetic structure among 14 populations of Dioryctria disclusa.

Locus	F _{is}	\mathbf{F}_{it}	F _{st}
LAP-2	-0.061	0.108	0.160
LAP-3	0.477	0.523	0.089
AAT-1	0.785	0.788	0.016
IDH	-0.169	0.084	0.216
MDH	0.520	0.564	0.091
G3PDH	0.488	0.521	0.064
EST-2	0.159	0.231	0.086
ME-1	-0.445	0.071	0.357
Total	0.253	0.336	0.111

lusa.
slu
is
r d
ŗ
ct
5
J.
s
tions of D
ati
ulí
do
Ă,
ce of
Se
an
ist
p
and
y a
riti
laı
Ш.
si
ic
Jet
gei
Jf €
x
Ţ.
Ia.
e
ld.
Ta

							Population	ation						
Population	1	2	3	4	5	9	2	8	6	10	11	12	13	14
1 RAL-1-NC	* * *	.028	.041	.115	.058	.064	.065	.066	.045	.266	.045	.075	.056	.116
2 RAL-2-NC	.972	* * *	.004	079.	.020	.025	.018	.037	.013	.228	.022	.027	.019	.059
3 RTP-NC	.960	966.	* * *	060.	.028	.036	.023	.053	.022	.248	.035	.037	.028	.064
4 LUM-NC	.891	.924	.913	* * *	.092	.108	.094	.065	.103	.276	060'	.091	.102	.189
5 MUR-NC	.944	.981	.972	.912	* * *	.008	.004	.018	.004	.182	600.	.014	700.	.066
6 GOL-NC	.938	.976	.965	868.	.992	* * *	.002	.023	.007	.217	.014	.010	000.	.078
7 NEW-SC	.937	.983	.978	.910	.996	.998	* * *	.027	.004	.228	.012	600.	.001	.063
8 EUT-AL	.936	.964	.949	.937	.982	779.	.973	* *	.026	.120	.020	.028	.024	.121
9 BUT-AL	.956	.988	.978	.902	966.	.993	966.	.974	* * *	.193	.010	.010	900.	.052
10 TUS-AL	.766	.796	.781	.759	.834	.805	.796	.887	.825	* * *	.222	.201	.225	.299
11 ROX-MS	.956	.978	996.	.914	.991	.986	.988	.980	066.	.801	* * *	.028	.010	.081
12 ATH-GA	.928	.973	.963	.913	.986	066.	166.	.973	066.	.818	.973	* * *	.010	.068
13 MIL-GA	.946	.981	.972	.903	.993	1.000	666.	779.	.994	.799	066.	066.	* * *	.066
14 LIN-IL	.890	.943	.938	.828	.936	.925	.939	.886	.950	.741	.922	.934	.936	* * *

Below diagonal: Nei (1978) unbiased genetic identity. Above diagonal: Nei (1978) unbiased genetic distance.

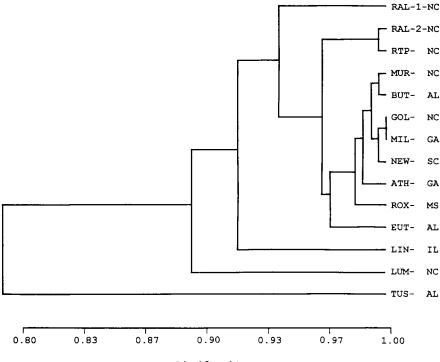


Fig. 2. Phenogram of 14 *Dioryctria disclusa* populations constructed using Nei's (1978) genetic similarity estimates and unweighted pair-group method with arithmetic averaging. (Cophenetic correlation = 0.958).

2.22) determined that this measure produced the best tree. A clustering level value > 0.95 was found between five of the six North Carolina (NC) populations; the LUM population was the exception. The clustering level value was highest between RAL-2-RTP, MUR-GOL, and RAL-1-RAL-2. Although the NC populations were more often closely clustered, both the greatest similarity (I = 1.0) between GOL-MIL and least similarity (I = 0.766) between RAL-1-TUS occurred among widely separated populations.

The genetic similarity among the three NC populations in the same area (RAL-1, RTP, RAL-2) suggests that gene flow may be occurring among them. Only a few migrants per generation are needed to maintain genetic variability within and genetic similarity among populations. Indeed, among subpopulations, migration is a potent force acting against genetic divergence that results from random genetic drift (Hartl and Clark 1989).

Geographically separated populations are exposed to different environments to which individuals adapt. This adaptation promotes change in the allele frequencies through natural selection and random genetic drift (Hartl and Clark 1989). There was no pattern of a geographic cline in allele frequencies across the north-south range of D. disclusa from North Carolina to Mississippi. There was no evidence of the Wahlund effect (Hartl and Clark 1989) which would reduce homozygosity in the relatively close populations (RAL-1, RTP, RAL-2) in NC.

Conclusions derived from the data are: (1) genetic variation is low in the population from Illinois due to a founder effect or bottleneck or sampling technique; (2) gene flow maintains genetic variation within and genetic similarity among the North Carolina populations; and (3) random mating occurs in the populations. Conceivably, the population genetic structure of *D. disclusa* is diverse because pine seed orchards are intensively managed to protect cones by using insecticides and increase tree vigor by applying fertilizers, and because natural stands are fragmented by urbanization.

Acknowledgments

I thank seed orchard managers for monitoring and mailing sticky traps from their respective region. I thank S. Katovich for sending the Illinois sample. I am grateful to G. Debarr, USDA Forest Service, Athens, GA; F. Hain, Department of Entomology, North Carolina State University, Raleigh, NC; and R. Weir, Department of Forestry, North Carolina State University, Raleigh, NC for reviewing an earlier draft. I thank J. Reaves, USDA Forest Service, Normal, AL; M. Page, USDA Forest Service, Albany, CA; and T. Emigh, Department of Genetics, North Carolina State University, Raleigh, NC for reviewing the current version.

References Cited

- Cheliak, W. M., and J. A. Pitel. 1984. Techniques for starch gel electrophoresis of enzymes from forest tree species. Can. For. Serv. Info. Report, PI-X-42. 49 pp.
- Harris, H., and D. A. Hopkinson. 1976. Handbook of enzyme electrophoresis in human genetics. North-Holland Publ. Amsterdam. 473 pp.
- Hartl, D. L. 1980. Principles of populations genetics. Sinauer Assoc., Inc., Sunderland, MA. 488 pp.
- Hartl, D. L., and A. G. Clark. 1989. Principles of population genetics. Sinauer Assoc., Inc., Sunderland, MA. 682 pp.
- Hedlin, A. F., H. O. Yates III, D. Cibrian-Tovar, B. H. Ebel, and E. P. Merkel. 1981. Cone and seed insects of North America conifers. Can. For. Serv., USDA For. Serv., and Secr. Agric. Recur., Hidraul, Mexico. 122 pp.
- Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet. 31: 225-233.
- 1987. Molecular evolutionary genetics. Columbia Univ. Press. NY. 512 pp.
- Shaw, C. R., and R. Prasad. 1970. Starch gel electrophoresis of enzymes: A compilation of recipes. Biochem. Genet. 4: 297-320.
- Swofford, D. L., and R. B. Selander. 1981. BIOSYS-1: A FORTRAN program for comprehensive analysis of electophoresis data in population genetics and systematics. J. Hered. 72: 281-283.
- Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420.